K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi M là trung điểm của BC, ta có:

AM = MB = 1/2 BC = a (tính chất tam giác vuông)

Suy ra MA = MB = AB = a

Suy ra ∆ AMB đều ⇒  ∠ (ABC) = 60 0

Mặt khác:  ∠ (ABC) +  ∠ (ACB) =  90 0  (tính chất tam giác vuông)

Suy ra:  ∠ (ACB) =  90 0  - ∠ (ABC) =  90 0  –  60 0  =  30 0

Trong tam giác vuông ABC, theo Pi-ta-go, ta có: B C 2 = A B 2 + A C 2

⇒  A C 2 = B C 2 - A B 2 = 4 a 2 - a 2 = 3 a 2 ⇒ AC = a 3

Vậy S A B C  = 1/2 .AB.AC

=  1 2 a . a 3 = a 2 3 2   ( đ v d t )

28 tháng 7 2017

xin lỗi mọi người là tính tứ giác aced chứ ko phải acbed

             Giải:

a) Diện tích tam giác ABC = 1/2 x AH x BC

    Diện tích tam giác ABE = 1/2 x AH x BE

                                          = 1/2 x AH x 2/3 BC

                                          = 1/2 x AH x BC x 2/3

                                          = Diện tích tam giác ABC x 2/3

Vậy: Diện tích tam giác ABE = 2/3 diện tích tam giác ABC.

b) Vì chiều cao DE có D là trung điểm nên Diện tích tam giác ABE = 2 lần diện tích tam giác BDE

                                                                                                           = 12 x 2

                                                                                                           = 24

                                                                      Diện tích tam giác ABC = 24 : 2/3

                                                                                                            = 36

c) Diện tích hình tứ giác ADEC là:        36 - 24 = 12 ( cm vuông)

                   Đáp số:  ...........................

8 tháng 2 2021

ko có đáp án bạn ạ

31 tháng 5 2017

A G K C D E B H F M a

a) Giả sử M là trung điểm của BC, \(\Delta ABM\) là tam giác đều nên \(\widehat{ABC}=60^o.\)

Từ đó suy ra: \(\widehat{BCA}=30^o\). Theo định lí Py-ta-go, ta có:

AC = \(\sqrt{BC^2-AB^2}\)

AC = \(\sqrt{4a^2-a^2}=a\sqrt{3}.\)

Do đó, ta có:

SABC = \(\dfrac{1}{2}AB.AC=\dfrac{1}{2}a^2\sqrt{3}.\) (1)

b) Vì \(\widehat{FAB}=\widehat{ABC}=60^o\) nên FA // BC (hai góc so le trong), từ đó suy ra FA vuông góc với BE và CG.

Gọi giao điểm của FA và BE là H, giao điểm của FA và CG là K. Ta có:

SFAG = \(\dfrac{1}{2}FA.GK=\dfrac{1}{2}a.\dfrac{a\sqrt{3}}{2}=\dfrac{1}{4}a^2\sqrt{3},\) (2)

SFBE = \(\dfrac{1}{2}BE.FH=\dfrac{1}{2}.2a.\dfrac{a}{2}=\dfrac{1}{2}a^2.\) (3)

c) SBDCE = 4a2, (4)

SABF = \(\dfrac{1}{4}a^2\sqrt{3},\) (5)

SACG = \(\dfrac{3}{4}a^2\sqrt{3}.\) (6)

Từ (1), (2), (3), (4), (5), (6), ta có:

SDEFG = \(\dfrac{a^2}{4}\left(18+7\sqrt{3}\right)\approx7,53a^2.\)

27 tháng 1 2022

\(\dfrac{AB^2\sqrt3}{4}=\dfrac{9^2\sqrt3}{4}=\dfrac{81\sqrt3}{4}\)

13 tháng 12 2016

3cm.3=9cm

d/s: 9cm

14 tháng 12 2016

nếu gọi canh là 'a' thì diện tích của tam giác đều là:

(a2*căn 3)/4

do đó diện tích bằng (32*căn 3)/4

hãy k đúng cho mình nha

23 tháng 7 2021

Áp dụng công thức Heron:

`p=(a+b+c)/2=(10+10+10)/2=15`

`=> S=\sqrt(p(p-a)(p-b)(p-c)) = \sqrt(15(15-10)^3) = 25\sqrt3`