K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi M là trung điểm của BC, ta có:

AM = MB = 1/2 BC = a (tính chất tam giác vuông)

Suy ra MA = MB = AB = a

Suy ra ∆ AMB đều ⇒  ∠ (ABC) = 60 0

Mặt khác:  ∠ (ABC) +  ∠ (ACB) =  90 0  (tính chất tam giác vuông)

Suy ra:  ∠ (ACB) =  90 0  - ∠ (ABC) =  90 0  –  60 0  =  30 0

Trong tam giác vuông ABC, theo Pi-ta-go, ta có: B C 2 = A B 2 + A C 2

⇒  A C 2 = B C 2 - A B 2 = 4 a 2 - a 2 = 3 a 2 ⇒ AC = a 3

Vậy S A B C  = 1/2 .AB.AC

=  1 2 a . a 3 = a 2 3 2   ( đ v d t )

17 tháng 10 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

S B C D E = B C 2 = 2 a 2 = 4 a 2  (dvdt)

Trong tam giác vuông BHA, theo Pi-ta-go, ta có: A H 2 + B H 2 = A B 2

⇒ B H 2 = A B 2 - A H 2 = a 2 - a 2 / 4 = 3 a 2 / 4 ⇒ BH = (a 3 )/2

S A B F  = 1/2 BH.FA = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong tam giác vuông AKG, theo Pi-ta-go, ta có: A C 2 = A K 2 + K C 2

⇒ A K 2 = A C 2 - K C 2 = 3 a 2 - 3 a 2 / 4 = 9 a 2 / 4 ⇒ AK = 3a/2 (đvdt)

S A C G  = 1/2 AK.CG = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

S D E F G  = S B C D E  + S F B E  + S FAB  + S F A G +  S A C G  + S A B C

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

18 tháng 1 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: ∠ (FAB) =  ∠ (ABC) = 60 0

FA // BC (vì có cặp góc ở vị trí so le trong bằng nhau)

BC ⊥ BE (vì BCDE là hình vuông)

Suy ra: FA ⊥ BE

BC ⊥ CD (vì BCDE là hình vuông)

Suy ra: FA ⊥ CD

Gọi giao điểm BE và FA là H, FA và CG là K.

⇒ BH ⊥ FA và FH = HA = a/2 (tính chất tam giác đều)

∠ (ACG) +  ∠ (ACB) +  ∠ (BCD) =   60 0 + 30 0 + 90 0 = 180 0

⇒ G, C, D thẳng hàng

⇒ AK ⊥ CG và GK = KC = 1/2 GC = 1/2 AC = (a 3 )/2

S F A G  = 1/2 GK.AF = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

S F B E  = 1/2 FH.BE = 1/2 .a/2 .2a = 1/2 a 2  (đvdt)

31 tháng 5 2017

A G K C D E B H F M a

a) Giả sử M là trung điểm của BC, \(\Delta ABM\) là tam giác đều nên \(\widehat{ABC}=60^o.\)

Từ đó suy ra: \(\widehat{BCA}=30^o\). Theo định lí Py-ta-go, ta có:

AC = \(\sqrt{BC^2-AB^2}\)

AC = \(\sqrt{4a^2-a^2}=a\sqrt{3}.\)

Do đó, ta có:

SABC = \(\dfrac{1}{2}AB.AC=\dfrac{1}{2}a^2\sqrt{3}.\) (1)

b) Vì \(\widehat{FAB}=\widehat{ABC}=60^o\) nên FA // BC (hai góc so le trong), từ đó suy ra FA vuông góc với BE và CG.

Gọi giao điểm của FA và BE là H, giao điểm của FA và CG là K. Ta có:

SFAG = \(\dfrac{1}{2}FA.GK=\dfrac{1}{2}a.\dfrac{a\sqrt{3}}{2}=\dfrac{1}{4}a^2\sqrt{3},\) (2)

SFBE = \(\dfrac{1}{2}BE.FH=\dfrac{1}{2}.2a.\dfrac{a}{2}=\dfrac{1}{2}a^2.\) (3)

c) SBDCE = 4a2, (4)

SABF = \(\dfrac{1}{4}a^2\sqrt{3},\) (5)

SACG = \(\dfrac{3}{4}a^2\sqrt{3}.\) (6)

Từ (1), (2), (3), (4), (5), (6), ta có:

SDEFG = \(\dfrac{a^2}{4}\left(18+7\sqrt{3}\right)\approx7,53a^2.\)

a: \(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

\(AC=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=5\cdot10\sqrt{3}=50\sqrt{3}\left(cm^2\right)\)

23 tháng 1 2022

Bạn có giải chi tiết cho mình đc ko ạ

 

 

tim abf: 17.56:2=?

đề thíu

5 tháng 1 2016

thiếu cái gì?

cái này chỉ là 1 phần trong bài, mấy phần kia biết làm rồi

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các...
Đọc tiếp

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều

1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN

2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM

3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các đoạn thẳng AD,AE sao cho AD vuông góc và bằng AB,AE vuông góc và bằng AC .Gọi M là trung điểm của DE .CMR : AM \(\perp\) BC

4.Vẽ ra ngoài tam giác ABC các tam giác ABD vuông cân tại B,ACE vuông cân tại C,Gọi M là trung điểm của DE.Tam giác BMC là tam giác gì ?? Vì sao?

5.Cho hình thang cân ABCD (AB\(//\) CD) có hai đường chéo AC và BD vuông góc với nhau.CMR chiều cao BH bằng đường Trung bình MN

Còn nhiều bài lắm các bn làm giúp mình nha

 

6
18 tháng 12 2018

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")

Giải : Từ giả thiết ta có 

D là trung điểm của AB và MO

,E là trung điểm của AC và ON

=> ED là đường trung bình của cả hai tam giác ABC và OMN

Áp dụng định lý đường trung bình vào  tam giác trên ,ta được

\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)

Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành

18 tháng 12 2018

Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@

15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ