Giải phương trình sau
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ne\frac{-1}{3}\)
\(PT\Leftrightarrow\left(\frac{4x-3}{3x+1}+2\right)\left(x^2+3x+1-4x-7\right)=0\)
\(\Leftrightarrow\left(\frac{10x-1}{3x+1}\right).\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\)\(x=\frac{1}{10}\)hoặc x=3 hoặc x=-2
Vậy...........
a, \(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy..............
b, \(\Leftrightarrow\left(x+\frac{2x}{x-2}\right)^2-2x.\frac{2x}{x-2}=12\)
\(\Leftrightarrow\left(\frac{x^2}{x-2}\right)^2-\frac{4x^2}{x-2}=12\)
\(\Leftrightarrow\left(\frac{x^2}{x-2}-6\right)\left(\frac{x^2}{x-2}+2\right)=0\)
Đến đây đơn giản rồi nhé
ĐKXĐ : \(x\ne-2\)
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
Cộng vào hai vê của pt với \(-\frac{4x^2}{x+2}\) được :
\(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{x+2}=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
\(\Leftrightarrow\left(\frac{x^2}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)
Đặt \(t=\frac{x^2}{x+2}\) thì pt trở thành \(t^2=12-4t\Leftrightarrow t^2+4t-12=0\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
Từ đó dễ dàng tìm ra x
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
ĐKXĐ: x\(\ne-2\)
Ta co
\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)
=> \(x^2-2.x.\frac{2x}{x+2}+\frac{4x^2}{\left(x+2\right)^2}\)\(+2.x.\frac{2x}{x+2}\)=12
=> \(\left(x-\frac{2x}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)
=>\(\frac{x^4}{\left(x+2\right)^2}+\frac{4x^2}{x+2}-12=0\)(1)
Đặt \(\frac{x^2}{x+2}=y\)
(1)<=>y2+4y-12=0
<=>(y+6)(y-2)=0
Đến đây dễ rồi bạn tự làm tiếp nhé