giúp mik phần b với
cho tam giác ABC , bt AB = 20 cm , AC = 48 cm ,BC = 52 cm
a, cm tam giác ABC là tam giác vuông
b,kẻ AH vuông góc vs BC . Tính AH
NHANH MIK TIK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)
a) tam giác ABC có BC^2=52^2=2704
mà AB^2+AC^2=20^2+48^2=2704
=> BC^2=AB^2+AC^2
=> tam giác ABC vuông tại A
b) tam giác ABC vuông tại A=> AH.BC=AB.AC
=> AH.52=20.48
=> AH.52=960
=> AH=240/13cm
sao chứng minh được \(\Delta ABC\)cân tại \(A\) khi đề bài cho \(AB=20\)và \(AC=48\)
\(\Delta\)cân là 2 cạnh bên của nó phải bằng nhau
đọc đề mình đã thấy nó không hợp lí rồi Nguyễn Hải Văn
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5
nên \(\widehat{B}\simeq53^0\)
=>góc C=90-53=37 độ
AH=AB*AC/BC=12*16/20=192/20=9,6cm
d: Xét ΔABC vuông tại A có
tan B=AC/AB=4/3
sin B=AC/BC=4/5
mà 4/3>4/5
nên tan B>sin B
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a) Ta có: \(20^2+48^2=2704\)
\(52^2=2704\)
suy ra: \(AB^2+AC^2=BC^2\)
Vậy \(\Delta ABC\)vuông tại \(A\)