K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2023

a) Vì \(AK = KI = IH \Rightarrow AK = \frac{1}{3}AH;AI = \frac{2}{3}AH\).

Vì \(EF//BC \Rightarrow EK//BH;MN//BC \Rightarrow MI//BH\)

Xét tam giác \(ABH\) ta có \(EK//BH\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AK}}{{AH}} = \frac{1}{3}\)

Xét tam giác \(ABH\) ta có \(MI//BH\), theo định lí Thales ta có:

\(\frac{{AM}}{{AB}} = \frac{{AI}}{{AH}} = \frac{2}{3}\)

Xét tam giác \(ABC\) ta có \(EF//BC\), theo hệ quả của định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{EF}}{{BC}} = \frac{1}{3} \Rightarrow \frac{{EF}}{{30}} = \frac{1}{3} \Rightarrow EF = \frac{{30.1}}{3} = 10\)

Xét tam giác \(ABC\) ta có \(MN//BC\), theo hệ quả của định lí Thales ta có:

\(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{30}} = \frac{2}{3} \Rightarrow EF = \frac{{30.2}}{3} = 20\)

Vậy \(EF = 10cm;MN = 20cm\).

b) Đổi \(10,8d{m^2} = 1080c{m^2}\)

Diện tích tam giác \(ABC\) là:

\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}AH.30 = 1080\left( {c{m^2}} \right)\)

\( \Rightarrow AH = 1080.2:30 = 72cm\)

Ta có: \(AH \bot BC \Rightarrow AH \bot MN\) (quan hệ từ vuông góc đến song song)

Do đó, \(KI \bot MN\)

Mà \(KI = \frac{1}{3}AH \Rightarrow KI = \frac{1}{3}.72 = 24cm\)

Tứ giác \(MNFE\) có \(MN//EF\) (cùng song song với \(BC\)) nên tứ giác \(MNFE\) là hình thang.

Lại có: \(KI \bot MN \Rightarrow KI\)là đường cao của hình thang.

Diện tích hình thang \(MNFE\) là:

\({S_{MNFE}} = \frac{1}{2}\left( {EF + MN} \right).KI = \frac{1}{2}.\left( {10 + 20} \right).24 = 360\left( {c{m^2}} \right)\)

Vậy diện tích tứ giác \(MNFE\) là \(360c{m^2}\).

a:

Xét ΔABH có EK//BH

nên EK/BH=AK/AH=1/3

Xét ΔAHB có MI//BH

nên MI/BH=2/3

Xét ΔABC có MN//BC

nên AM/AB=MN/BC

=>MN/30=2/3

=>MN=20(cm)

Xét ΔABC có EF//BC

nên EF/BC=AE/AB=1/3

=>EF=10(cm)

b: S ABC=1/2*AH*BC

=>1/2*AH*30=1080

=>AH=1080/15=72(cm)

KI=1/3*AH=24(cm)

S MNFE=1/2*(EF+MN)*KI=360cm2

Đề thiếu rồi bạn

2 tháng 2 2021

Các bạn giúp mình câu này nhanh nha 

2 tháng 2 2021

A B C H E F M N

Theo tính chất đường thẳng song song : 

\(AK=KI=IH\)( gt )

=> AE = EM = MB 

=> AF = FN = NC 

Theo bài ra ta có : \(\frac{MN}{BC}=\frac{AM}{MB}=\frac{2MB}{MB}=2\)cm 

\(\frac{EF}{BC}=\frac{AE}{EB}=\frac{AE}{2AE}=\frac{1}{2}\)cm 

hay \(2EF=BC\)(*) 

Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=90\)( gt ) 

\(\Delta AMN\)có EF là đường trung bình ( AE = EM ; AF = FN ) 

Suy ra : EF // MN và EF = 1/2 MN 

Ta có :  \(S_{MNEF}=\frac{\left(EF+MN\right).IK}{2}\)mà \(IK=\frac{1}{3}AH\)

\(=\frac{\left(EF+MN\right).\frac{AH}{3}}{2}=\frac{\left(EF+2EF\right).\frac{AH}{3}}{2}\)

\(=\frac{EF.AH}{2}\)mà \(2EF=BC\)cmt (*)

\(=\frac{\frac{BC}{2}.AH}{2}=\frac{BC.AH}{4}\)

Vậy \(S_{MNEF}=\frac{180}{4}=45\)cm2

20 tháng 12 2018

a) Áp dụng hệ quả định lý Ta-let ta có:

ΔABC có MN // BC (M ∈ AB, N ∈ AC) ⇒ Giải bài 11 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAHC có KN // HC (K ∈ AH, N ∈ AC) ⇒ Giải bài 11 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 11 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chứng minh tương tự ta có:

Giải bài 11 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Mà ta có:

Giải bài 11 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) Ta có:

Giải bài 11 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

2 tháng 4 2021

phải là tam giác ABC vuông chứ ? 

A B C 6 8 H

a, Xét tam giác BHA và tam giác BAC ta có : 

^B chung

^BHA = ^BAC = 900

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )

tương tự với CHA ~ tam giác CAB ( g.g )

\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\)( tỉ số đồng dạng )

b, tam giác ABC vuông tại A, AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=26+64=100\Rightarrow BC=10\)cm

Ta có : \(\frac{AH}{AB}=\frac{AB}{BC}\Rightarrow AB.AC=AH.BC\)( cma )

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}\)cm 

Ta có : \(\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=HC.BC\)

\(\Rightarrow64=HC.10\Rightarrow HC=\frac{64}{10}=\frac{32}{5}\)cm 

2 tháng 4 2021

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc BHA=90độ

B góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c =>

a, Xét \(\Delta\)HBA và \(\Delta\)ABC ta có : 

\(\widehat{B}-chung\)

\(\widehat{BAC}=\widehat{BHA}\left(90^0\right)\)

\(\Rightarrow\Delta\)HBA đồng dạng với \(\Delta\)ABC(g.g)

b, Vì \(\Delta\)ABC vuông tại A => A = 90^0 

Áp dụng đinh lí Py ta go ta đc : 

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\Leftrightarrow BC=20\)

Làm tiếp nhé.