Cho tam giác ABC có BC=18 cm. Trên đường cao AH lấy điểm I và K sao cho AK=IK=IH. Qua I và K lầ lượt vẽ các đường thẳng MN và PQ cùng song song với BC( M và P \(\in\)AB; N và Q\(\in\)AC) Tính MN, PQ
Giúp mik nha! thanks!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(AK = KI = IH \Rightarrow AK = \frac{1}{3}AH;AI = \frac{2}{3}AH\).
Vì \(EF//BC \Rightarrow EK//BH;MN//BC \Rightarrow MI//BH\)
Xét tam giác \(ABH\) ta có \(EK//BH\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AK}}{{AH}} = \frac{1}{3}\)
Xét tam giác \(ABH\) ta có \(MI//BH\), theo định lí Thales ta có:
\(\frac{{AM}}{{AB}} = \frac{{AI}}{{AH}} = \frac{2}{3}\)
Xét tam giác \(ABC\) ta có \(EF//BC\), theo hệ quả của định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{EF}}{{BC}} = \frac{1}{3} \Rightarrow \frac{{EF}}{{30}} = \frac{1}{3} \Rightarrow EF = \frac{{30.1}}{3} = 10\)
Xét tam giác \(ABC\) ta có \(MN//BC\), theo hệ quả của định lí Thales ta có:
\(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{30}} = \frac{2}{3} \Rightarrow EF = \frac{{30.2}}{3} = 20\)
Vậy \(EF = 10cm;MN = 20cm\).
b) Đổi \(10,8d{m^2} = 1080c{m^2}\)
Diện tích tam giác \(ABC\) là:
\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}AH.30 = 1080\left( {c{m^2}} \right)\)
\( \Rightarrow AH = 1080.2:30 = 72cm\)
Ta có: \(AH \bot BC \Rightarrow AH \bot MN\) (quan hệ từ vuông góc đến song song)
Do đó, \(KI \bot MN\)
Mà \(KI = \frac{1}{3}AH \Rightarrow KI = \frac{1}{3}.72 = 24cm\)
Tứ giác \(MNFE\) có \(MN//EF\) (cùng song song với \(BC\)) nên tứ giác \(MNFE\) là hình thang.
Lại có: \(KI \bot MN \Rightarrow KI\)là đường cao của hình thang.
Diện tích hình thang \(MNFE\) là:
\({S_{MNFE}} = \frac{1}{2}\left( {EF + MN} \right).KI = \frac{1}{2}.\left( {10 + 20} \right).24 = 360\left( {c{m^2}} \right)\)
Vậy diện tích tứ giác \(MNFE\) là \(360c{m^2}\).
a:
Xét ΔABH có EK//BH
nên EK/BH=AK/AH=1/3
Xét ΔAHB có MI//BH
nên MI/BH=2/3
Xét ΔABC có MN//BC
nên AM/AB=MN/BC
=>MN/30=2/3
=>MN=20(cm)
Xét ΔABC có EF//BC
nên EF/BC=AE/AB=1/3
=>EF=10(cm)
b: S ABC=1/2*AH*BC
=>1/2*AH*30=1080
=>AH=1080/15=72(cm)
KI=1/3*AH=24(cm)
S MNFE=1/2*(EF+MN)*KI=360cm2
Theo tính chất đường thẳng song song :
\(AK=KI=IH\)( gt )
=> AE = EM = MB
=> AF = FN = NC
Theo bài ra ta có : \(\frac{MN}{BC}=\frac{AM}{MB}=\frac{2MB}{MB}=2\)cm
\(\frac{EF}{BC}=\frac{AE}{EB}=\frac{AE}{2AE}=\frac{1}{2}\)cm
hay \(2EF=BC\)(*)
Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=90\)( gt )
\(\Delta AMN\)có EF là đường trung bình ( AE = EM ; AF = FN )
Suy ra : EF // MN và EF = 1/2 MN
Ta có : \(S_{MNEF}=\frac{\left(EF+MN\right).IK}{2}\)mà \(IK=\frac{1}{3}AH\)
\(=\frac{\left(EF+MN\right).\frac{AH}{3}}{2}=\frac{\left(EF+2EF\right).\frac{AH}{3}}{2}\)
\(=\frac{EF.AH}{2}\)mà \(2EF=BC\)cmt (*)
\(=\frac{\frac{BC}{2}.AH}{2}=\frac{BC.AH}{4}\)
Vậy \(S_{MNEF}=\frac{180}{4}=45\)cm2
a) Áp dụng hệ quả định lý Ta-let ta có:
ΔABC có MN // BC (M ∈ AB, N ∈ AC) ⇒
ΔAHC có KN // HC (K ∈ AH, N ∈ AC) ⇒
Chứng minh tương tự ta có:
Mà ta có:
b) Ta có:
phải là tam giác ABC vuông chứ ?
a, Xét tam giác BHA và tam giác BAC ta có :
^B chung
^BHA = ^BAC = 900
Vậy tam giác BHA ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )
tương tự với CHA ~ tam giác CAB ( g.g )
\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\)( tỉ số đồng dạng )
b, tam giác ABC vuông tại A, AH là đường cao
Áp dụng định lí Py ta go ta có :
\(BC^2=AB^2+AC^2=26+64=100\Rightarrow BC=10\)cm
Ta có : \(\frac{AH}{AB}=\frac{AB}{BC}\Rightarrow AB.AC=AH.BC\)( cma )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}\)cm
Ta có : \(\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=HC.BC\)
\(\Rightarrow64=HC.10\Rightarrow HC=\frac{64}{10}=\frac{32}{5}\)cm
a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ
b, Xét tam giác ABC và tam giác AHB có
góc BAC=góc BHA=90độ
B góc chung
=> tam giác ABC đồng dạng với tam giác HBA ( gg)
c =>
a, Xét \(\Delta\)HBA và \(\Delta\)ABC ta có :
\(\widehat{B}-chung\)
\(\widehat{BAC}=\widehat{BHA}\left(90^0\right)\)
\(\Rightarrow\Delta\)HBA đồng dạng với \(\Delta\)ABC(g.g)
b, Vì \(\Delta\)ABC vuông tại A => A = 90^0
Áp dụng đinh lí Py ta go ta đc :
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\Leftrightarrow BC=20\)
Làm tiếp nhé.