cho tam giác ABC có AB=AC. Kẻ AE là tia phân giác của góc BAC(D thuộc BC).chứng minh rằng
a)tam giác ABE= tam giác ACE
b)AE là đường trung trực của đoạn thẳng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABC có: AB = AC (gt) => Tam giác ABC cân tại A
Xét tam giác ABE và tam giác ACE:
^B = ^C (tam giác ABC cân tại A)
^BAE = ^CAE (AE là tia phân giác của góc BAC)
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABE = Tam giác ACE (g c g)
b/ Xét tam giác ABC cân tại A: AE là tia phân giác của góc BAC (gt)
=> AE là đường trung trực của đoạn thẳng BC (TC các đường trong tam giác cân)
a: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAE}\)
AE chung
Do đó: ΔABE=ΔACE
b: ta có: ΔABC cân tại A
mà AE là tia phân giác của góc BAC
nên AE là đường trung trực của BC
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a: \(\widehat{ABC}=30^0\)
b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
c: Ta có: ΔACE=ΔAKE
nên AC=AK; EC=EK
hay AE là đường trung trực của CK
d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Xét tg ABE và tg ACE có:
AB = AC (gt).
Góc BAE = Góc CAE (AE là phân giác của góc BAC).
AE chung.
=> tg ABE = tg ACE (c - g - c).
b) Xét tg ABC có: AB = AC (gt)
Tg ABC cân tại A.
Xét tg ABC cân tại A có:
AE là phân giác của góc BAC (gt).
=> AE đường trung trực của đoạn thẳng BC (tính chất các đường trong tg cân).
Vì AB = AC (gt) => tam giác ABC là tam giác cân tại A .
Mà trong tam giác cân, đường phân giác cũng là đường trung trực => BE = EC
Xét tam giác ABE và tam giác ACE:
AB = AC (gt)
BE = EC (cmt)
AE chung
=> tam giác ABE = tam giác ACE (c.c.c)
b) Ta lại có: trong tam giác cân, đường phân giác cũng là đường cao của tam giác đó. => AE vuông góc với BC tại E
Xét tam giác ABC:
BE = EC (ý a)
AE vuông góc với BC tại E. (cmt)
=> AE là đường trung trực của BC
a: ΔABC cân tại A
mà AE là phân giác
nên AE là trung trực của BC
b: O nằm trên trung trực của AB
=>OA=OB
O nằm trên trung trực của BC
=>OB=OC
=>OA=OC
=>O nằm trên trung trực của AC
c: OA=OB=OC
=>O cách đều 3 đỉnh của ΔABC