tính \(\frac{A}{B}\)
\(A=\frac{1}{1.300}+\frac{1}{2.301}+..........\frac{1}{101.400}\)
\(B=\frac{1}{1.102}+\frac{1}{1.103}+\frac{1}{1.104}+.............\frac{1}{299.400}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(B=\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+...+\frac{1}{299\cdot400}\)
____________________________________________
\(A=\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+...+\frac{1}{101\cdot400}\\ A=\frac{1}{299}\left(\frac{299}{1\cdot300}+\frac{299}{2\cdot301}+...+\frac{299}{101\cdot400}\right)\\ A=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\\ A=\frac{1}{299}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}\right)\right]\left(1\right)\)
\(B=\frac{1}{1\cdot102}+\frac{1}{2\cdot103}+...+\frac{1}{299\cdot400}\\ B=\frac{1}{101}\left(\frac{101}{1\cdot102}+\frac{101}{2\cdot103}+...+\frac{101}{299\cdot400}\right)\\ B=\frac{1}{101}\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\\ B=\frac{1}{101}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\right]\\ B=\frac{1}{101}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}{\frac{1}{101}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}\\ \frac{A}{B}=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{1}{299}\cdot101=\frac{101}{299}\)
\(A=\frac{\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}}=\frac{1}{154526}\)
cghsbbvb hs bsc x bvbddddddd c n snsnfERGQHZ NAC nnnnNNNNNNNNNNNNNNNNNNNNNNNN nsn v
đặt \(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)
\(\Rightarrow299A=\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)=C\)
\(\Rightarrow A=\frac{C}{299}\)
đặt \(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)
\(\Rightarrow101B=\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{1}{299.400}=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+...+\frac{1}{400}\right)=C\)
\(\Rightarrow B=\frac{C}{101}\)
bài toán được viết lại như sau:
\(\frac{C}{\frac{299}{\frac{C}{101}}}\)=\(\frac{101}{299}\)
Ta có:
\(A=\frac{1}{1.300}+\frac{1}{2.301}+...+\frac{1}{101.400}\)
\(\Rightarrow A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(\Rightarrow A=\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
Lại có:
\(B=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
\(\Rightarrow B=\frac{1}{101}.\left(\frac{101}{1.102}+\frac{101}{2.103}+...+\frac{101}{299.400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+...+\frac{1}{299}-\frac{1}{400}\right)\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow B=\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{299}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}{\frac{1}{101}.\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]}\)
\(\Rightarrow\frac{A}{B}=\frac{1}{299}:\frac{1}{101}\)
\(\Rightarrow\frac{A}{B}=\frac{101}{299}.\)
Vậy \(\frac{A}{B}=\frac{101}{299}.\)
Chúc bạn học tốt!
Có cách giải nào ngắn hơn k vậy???