cho tam giác ABC cân tại A có góc A <90độ. M và N lần lượt là trung điểm của AB và AC. đường phân giác góc A cắt MN ở K và Bc ở H. trên AM lấy E. Ek cắt BN tại F. chứng minh góc EHK= góc FHK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
1)
Ta có tam giác ABC cân tại A => góc B = góc C = (180 - 50) : 2 = 65 độ
2)
Ta có: tam giác ABC cân tại A => góc B = góc C = (180 - góc A) : 2
mà góc B = A + 300
=> (1800 - góc A) : 2 = Â + 300
=> \(\frac{180}{2}-\frac{Â}{2}=Â+30^0\)
=> 900 - Â/2 = Â + 300
=> 900- 300 = Â + Â/2
=> \(60^0=\frac{3Â}{2}\Rightarrow3Â=60\cdot2=120\RightarrowÂ=\frac{120}{3}=40^0\)
=> góc B = góc C = (180 - Â) : 2 = (180 - 40) : 2 = 70 độ
vì tam giác ABC có góc B=C nên :
cạnh AB=AC(tương ứng )
BC là cạnh chung
Suy ra tam giác ABC cân tại A
Nhật Tân
p/s : kham khảo
pn đang làm cái j vậy