K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2022

- Hình vẽ:

undefined

a) - Xét △EDM có:

AB//DM (ABCD là hình thang có 2 đáy là AB và CD).

=>\(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) (định lí Ta-let) (1).

- Xét △FCM có:

AB//CM (ABCD là hình thang có 2 đáy là AB và CD).

=>\(\dfrac{BF}{MF}=\dfrac{AB}{CM}\) (định lí Ta-let) (2).

- Từ (1) và (2) và \(CM=DM\) (M là trung điểm BC) suy ra:

\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\).

- Xét △ABM có:

\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\) (cmt)

=>\(EF\)//\(AB\) (định lí Ta-let đảo)nên\(EF\)//\(AB\)//\(CD\)

b) -Xét △ADM có: 

HE//DM (cmt).

=>\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (định lí Ta-let). (3)

- Xét △ACM có:

EF//CM (cmt)

=>\(\dfrac{EF}{CM}=\dfrac{AE}{AM}\) (định lí Ta-let) (4)

- Từ (3) và (4) và \(DM=CM\) (M là trung điểm BC) suy ra: \(HE=EF\)

-Xét △BDM có: 

EF//DM (cmt).

=>\(\dfrac{EF}{DM}=\dfrac{BF}{BM}\)(định lí Ta-let). (5)

- Xét △BCM có:

NF//CM (cmt)

=>\(\dfrac{NF}{CM}=\dfrac{BF}{BM}\) (định lí Ta-let) (6)

- Từ (5) và (6) và \(CM=DM\) (M là trung điểm BC) suy ra: \(NF=EF\)

Mà ​\(HE=EF\) nên \(HE=EF=NF=\dfrac{1}{3}HN\).

c) -Ta có: ​\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (cmt)

=>​\(\dfrac{DM}{HE}=\dfrac{AM}{AE}\).

=>\(\dfrac{DM}{HE}-1=\dfrac{EM}{AE}\) (7)

- Ta có: \(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) nên ​\(\dfrac{EM}{AE}=\dfrac{DM}{AB}\). (8)

- Từ (7) và (8) suy ra:

\(\dfrac{DM}{HE}-1=\dfrac{DM}{AB}\)

=>\(\dfrac{DM}{HE}=\dfrac{DM}{AB}+1=\dfrac{DM+AB}{AB}\)

=>\(HE=\dfrac{AB.DM}{AB+DM}=\dfrac{7,5.\left(12.\dfrac{1}{2}\right)}{7,5+\left(12.\dfrac{1}{2}\right)}=\dfrac{10}{3}\)

=>\(HN=3HE=3.\dfrac{10}{3}=10\) (cm).

 

​​​​

 

 

 

30 tháng 12 2017

có cần vẽ hình k bn

30 tháng 12 2017

chắc cần vẽ đó bạn .

30 tháng 1 2021

a/ Có AB // DM

=> t/g ABE đồng dạng t/g MDE (đ/l)

=> AE/ME = AB/MD = AB/MC (1)

Có AB // CM

=> t/g ABF đồng dạng t/g CMF (đ/l)

=> AF/MF = AB/CM (2)(1) ; (2)

=> AE/ME = AF/MF

Xét t/g AMB có AE/ME=AF/MF

=> EF // BC (Thales đảo)

b/ Xét t/g DEM có AB // DM

=> ME/AM = DM/AB (Hệ quả đ.l Thales)

Xét t/g AMB có EF // AB

=> ME/AM = EF/AB (Hệ quả Thales)

Do đó EF = DM = 1/2DC = 6 (cm)P/s: câu b không chắc lắm.

a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)

nên AB//MC

Xét ΔAFB và ΔCFM có 

\(\widehat{FAB}=\widehat{FCM}\)(hai góc so le trong, AB//MC)

\(\widehat{AFB}=\widehat{CFM}\)(hai góc đối đỉnh)

Do đó: ΔAFB\(\sim\)ΔCFM(g-g)

nên \(\dfrac{FA}{FC}=\dfrac{FB}{FM}=\dfrac{AB}{CM}\)

mà CM=DM(M là trung điểm của CD)

nên \(\dfrac{BF}{FM}=\dfrac{AB}{DM}\)(1)

Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)

nên AB//DM

Xét ΔABE và ΔMDE có 

\(\widehat{ABE}=\widehat{MDE}\)(hai góc so le trong, AB//DM)

\(\widehat{AEB}=\widehat{MED}\)(hai góc đối đỉnh)

Do đó: ΔABE\(\sim\)ΔMDE(g-g)

nên \(\dfrac{AB}{DM}=\dfrac{AE}{EM}\)(2)

Từ (1) và (2) suy ra \(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)

Xét ΔAMB có 

E\(\in\)AM(Gt)

F\(\in\)BM(gt)

\(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)(cmt)

Do đó: EF//AB(Định lí Ta lét đảo)

6 tháng 3 2018

a)Theo hệ quả định lý Ta let có:

Xét tam giác FMC có :

AB // CD => AB // MC nên BF/FM=AB/CM(1)

Xét tam giác EDM có :

AB // DM => AE/EM=AB/DM(2)

Mà M là trung điểm DC => DM = MC

=> AB/DM=AB/MC(3)

Từ (1) (2) (3) => AE/EM=BF/FM

Xét tam giác MBA có : AE/EM=BF/FM=> EF // AB

b)Xét tam giác EDM có AB // DM => ME/AM=DM/AB(4)

Do EF//AB => EF/AB=ME/AM(5)

Từ (4) và (5) => DM/AB=EF/ABEF=DM=12/2=6cm