Cho phương trình: 2x^2-3x+m-1=0. Tìm m để phương trình: a) có một nghiệm bằng 1, từ đó suy ra nghiệm còn lại. b) có 2 nghiệm x1, x2 thoả x1/x2 + x2/x1 = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) PT nhận $x=1$ là nghiệm, tức là:
$2.1^2-3.1+m-1=0$
$\Leftrightarrow -1+m-1=0$
$\Leftrightarrow m=2$
Nghiệm còn lại: $\frac{3}{2}-1=\frac{1}{2}$ theo định lý Viet
b)
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=9-8(m-1)\geq 0\Leftrightarrow m\leq \frac{17}{8}$.
Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{3}{2}\\ x_1x_2=\frac{m-1}{2}\end{matrix}\right.\)
Khi đó:
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=2\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=2\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=2\Leftrightarrow \frac{\frac{9}{4}}{\frac{m-1}{2}}=4\)
\(\Leftrightarrow m=\frac{17}{8}\) (thỏa mãn)
a: Thay x=-1 vào (6), ta được:
1+2m+m+6=0
=>3m+7=0
=>m=-7/3
x1+x2=-2m/1=-2*7/3=-14/3
=>x2=-14/3-x1=-14/3+1=-11/3
b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)
Để phương trình có nghiệm kép thì 3m+6=0
=>m=-2
Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0
=>x^2-4x+4=0
=>x=2
ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
a) xét delta phẩy ta có:
1 + m - 2 = m -1 để phương trình có 2 nghiệm phân biệt thì delta phẩy >0
=> m-1>0 => m > 1
b) theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=2-m\end{matrix}\right.\)
theo bài ra ta có: x12 - x22 = 8
<=> (x1-x2).(x1+x2)= 8
<=> 2(x1-x2) = 8 <=> x1-x2 = 4
<=> (x1-x2)2 = 16 <=> x12 + x22 - 2x1x2 = 16
<=> (x1+x2)2 - 4x1x2 = 16 <=> 4 - 4.(2m - 1 ) = 16
<=> 4 - 8m + 4 = 16 <=> 8m = -8
=> m = -1
vậy m = -1 thỏa mãn x12 - x22 = 8
bài này m = -1 loại nha do không thỏa điều kiện
=> không có m thỏa mãn.
( sorry tui làm ẩu quá nên quên cái điều kiện m > 1 )
a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)
\(=4m^2+16m+16+8m+20=4m^2+24m+36\)
\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+3<>0
hay m<>-3
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)
\(\Leftrightarrow4m^2+24m+36=4\)
\(\Leftrightarrow m^2+6m+9=1\)
=>m+3=1 hoặc m+3=-1
=>m=-2 hoặc m=-4
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
a) Để pt có 1 nghiệm bằng 1 thì \(2.1^2-3.1+m-1=0\Leftrightarrow m=2\).
Khi đó \(PT\Leftrightarrow2x^2-3x+1=0\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\).
Nghiệm còn lại là \(x=\dfrac{1}{2}\).
b) Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}=4\Leftrightarrow\left(x_1-x_2\right)^2=0\Leftrightarrow x_1=x_2\).
Để pt có nghiệm kép khác 0 thì \(\left\{{}\begin{matrix}\Delta=3^2-8\left(m-1\right)\ge0\\m-1\ne0\end{matrix}\right.\Leftrightarrow m=\dfrac{17}{8}\).