K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

a) Để pt có 1 nghiệm bằng 1 thì \(2.1^2-3.1+m-1=0\Leftrightarrow m=2\).

Khi đó \(PT\Leftrightarrow2x^2-3x+1=0\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\).

Nghiệm còn lại là \(x=\dfrac{1}{2}\).

b) Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}=4\Leftrightarrow\left(x_1-x_2\right)^2=0\Leftrightarrow x_1=x_2\).

Để pt có nghiệm kép khác 0 thì \(\left\{{}\begin{matrix}\Delta=3^2-8\left(m-1\right)\ge0\\m-1\ne0\end{matrix}\right.\Leftrightarrow m=\dfrac{17}{8}\).

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

a) PT nhận $x=1$ là nghiệm, tức là:

$2.1^2-3.1+m-1=0$

$\Leftrightarrow -1+m-1=0$

$\Leftrightarrow m=2$

Nghiệm còn lại: $\frac{3}{2}-1=\frac{1}{2}$ theo định lý Viet

b) 

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta=9-8(m-1)\geq 0\Leftrightarrow m\leq \frac{17}{8}$. 

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{3}{2}\\ x_1x_2=\frac{m-1}{2}\end{matrix}\right.\)

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=2\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=2\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=2\Leftrightarrow \frac{\frac{9}{4}}{\frac{m-1}{2}}=4\)

\(\Leftrightarrow m=\frac{17}{8}\) (thỏa mãn)

a: Thay x=-1 vào (6), ta được:

1+2m+m+6=0

=>3m+7=0

=>m=-7/3

x1+x2=-2m/1=-2*7/3=-14/3

=>x2=-14/3-x1=-14/3+1=-11/3

b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)

Để phương trình có nghiệm kép thì 3m+6=0

=>m=-2

Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0

=>x^2-4x+4=0

=>x=2

29 tháng 1 2023

ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

28 tháng 4 2022

a) xét delta phẩy ta có:

1 + m - 2 = m -1 để phương trình có 2 nghiệm phân biệt thì delta phẩy >0 

=> m-1>0 => m > 1 

b) theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=2-m\end{matrix}\right.\)

theo bài ra ta có: x12 - x22 = 8 

<=> (x1-x2).(x1+x2)= 8 

<=>  2(x1-x2) = 8 <=> x1-x2 = 4 

<=> (x1-x2)2 = 16 <=> x12 + x22 - 2x1x2 = 16

<=> (x1+x2)2 - 4x1x2 = 16 <=> 4 - 4.(2m - 1 ) = 16 

<=> 4 - 8m + 4 = 16 <=> 8m = -8 

=> m = -1 

vậy m = -1 thỏa mãn x12 - x22 = 8 

28 tháng 4 2022

bài này m = -1 loại nha do không thỏa điều kiện 

=> không có m thỏa mãn. 

( sorry tui làm ẩu quá nên quên cái điều kiện m > 1 ) 

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

2 tháng 4 2021

giúp e câu b nx