Chứng minh tổng \(K=1+2+2^2+...+2^{2011}\)chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đồng dư thức nek, nó khá dài :))
C = 1 + 2 + 22 + ... + 22011
2C = 2 + 22 + 23 + ... + 22012
2C - C = 2 + 22 + 23 + ... + 22012 - 1 + 2 + 22 + ... + 22011
C = 22012 - 1
Ta có 22012 = 16503 đồng dư với 1 (mod 15)
=> 16503 - 1 đồng dư với 1 - 1 (mod 15)
=> 16503 - 1 đồng dư với 0 (mod 15)
=> 16503 - 1 chia hết cho 15
=> 22012 - 1 chia hết cho 15
=> C chia hết cho 15
C = 1 + 2 + 2^2 +..........+ 2^2011
C = ( 1 + 2 + 2^2 + 2^3 ) +............. + ( 2^2008 + 2^2009 + 2^2010 + 2^2011)
C = 1( 1 + 2 + 2^2 + 2^3 ) + ............ + 2 ^2008 ( 1 + 2 + 2^2 + 2^3 )
C = ( 1 + ............. + 2^2008) . 15
Vậy C chia hết cho 15
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
gọi a,b la 2 so tu nhien
ta có
a+b=2n+1(n thuoc n sao)
suy ra a=2n,b=2n+1 hoặc b=2n,a=2n+1
suy ra tích cua chúng chia hết cho 2 vì trong tích đều co số chia hết cho2
1) Nếu đó là 2 số lẻ => tổng của chúng chia hết cho 2 => vô lí
Đối với trg hợp 2 số chẵn, tương tự như 2 số lẻ.
Mà số chẵn chia hết cho 2 và nhân với số nào cũng ra số chẵn
=> đpcm
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
K = (1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+.....+(2^2008+2^2009+2^2010+2^2011)
= 15+2^4.(1+2+2^2+2^3)+......+2^2008.(1+2+2^2+2^3)
= 15+2^4.15+.....+2^2008.15
= 15.(1+2^4+....+2^2008) chia hết cho 15
Tk mk nha
2k= 2( 1+ 2 + 22 +.....+22011)
2k=2 + 22 + 23 +......+22012 -
k= 2 + 22 + .......+ 22011 + 1 k=22012-1= 22008 x 24 -1 = 22008 x 15 chia het cho 15