Tìm n thuộc Z để:
a)n+3 chia hết cho 2n+1
b)n2+1 chia hết cho n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a, \(\frac{2n+2}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\)
Để \(2n+2⋮2n-1\text{thì}2n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét bảng ( tự xét nha )
KL
b, \(\frac{2n-5}{n+3}=\frac{2\left(n+3\right)-11}{n+3}=2-\frac{11}{n+3}\)
\(\text{Để}2n-5⋮n+3\text{thì}n+3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Xét bảng ( tự xét nha )
KL
3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-1;1;-5;5}
+)n-1=-1=>n=0
+)n-1=1=>n=2
+)n-1=-5=>n=-4
+)n-1=5=>n=6
vậy...
\(n^2+2n-7:n+2=>n\left(n+2\right)-7:n+2\) ) (: là chia hết)
=>-7 chia hết cho n+2
=>n+2 E Ư(-7)={-1;1;-7;7}
+)n+2=-1=>n=1
+)n+2=1=>n=3
+)n+2=-7=>n=-5
+)n+2=7=>n=9
vậy...
tick nhé
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
b) \(n^2+1\)\(⋮\)\(n+2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+2\right)+5\)\(⋮\)\(n+2\)
Ta thấy \(\left(n-2\right)\left(n+2\right)\)\(⋮\)\(n+2\)
nên \(5\)\(⋮\)\(n+2\)
hay \(n+2\)\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng sau:
\(n+2\) \(-5\) \(-1\) \(1\) \(5\)
\(n\) \(-7\) \(-3\) \(-1\) \(3\)
Vậy....
đường quỳnh giang đây là bài lớp 6 mà m đi dùng hẳng đẳng thức ?? em nó hiểu làm sao được hả con ngu này :)