cho p là số nguyên tố lớn hơn 3 chứng minh rằng 12p^2 - 1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
Vì p là số nguyên tố >3 nên p là số lẻ
→ 2 số p-2,p+1 là 2 số chẵn liên tiếp
→(p-2)(p+1) ⋮ cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên
→ p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 → (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)
+) Với p=3k+2 → (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)
Từ (*) và (**) →(p-2)(p+1) ⋮ 3 (2)
Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Do p nguyên tố, p > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3
=> p2 chia 3 dư 1
=> p2 - 1 chia hết cho 3 (1)
Do p nguyên tố, p > 3 nên p lẻ => p2 lẻ
=> p2 chia 8 dư 1
=> p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 => p2 - 1 chia hết cho 24
=> đpcm
Ủng hộ mk nha ^-^
rong các nhân vật Sơn Tinh , Thánh Gióng , Thạch sanh em thích nhân vật nào nhứt ! Vì SAO?
Nè ti k cần mấy người dạy đời nhé tui bị trừ điểm hay xóa nick là chuyện của tui
tui cần ấy người trả lời thui ai trả lời hay và nhanh tui k cho 3 cái nhé
tối nay hạn chót òi
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3
Ta có: A = n2 - 1 = (n - 1)(n + 1)
Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)
- Nếu n = 3k + 1 thì:
A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3
- Nếu n = 3k + 2 thì:
A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3
Từ hai trường hợp trên ta có A \(⋮\) 3 (2)
Mà (8,3) = 1 (3)
Từ (1),(2),(3) => \(A⋮24\)
đề kiểm tra học kì 2 lớp 6 phải ko? chữa lại làm zì nữa. em tui hôm qua cũng không làm được
Ta có:
12p2-1
=>12p.12p - 1
=> 144p - 1
144p chia hết cho 24, 1 không chia hết cho 24.
=> 12p^2-1 \(⋮̸\)24
Vậy 12p2-1 \(⋮̸\)24