Tìm \(x\):
a ) \(x\)x 6 - 4,99 = 25,01
b ) \(x\): 6 = \(\frac{7}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) X x 6 - 4,99 = 25,01 b ) X : 6 = 7/4
X x 6 = 25,01 + 4,99 X : 6 = 1,75
X x 6 = 30 X = 1,75 x 6
X = 30 : 6 X = 10,5
X = 5
y x 6 - 4,99 = 25
y x 6=25+4,99=29,99
y=29,99:6=4.9983.......
+) Ta có: \(x\times6-4,99=25,01\)
\(x\times6=30\)
\(x=5\)
+) Ta có: \(\left(x+8,4\right):5=2,2\)
\(x+8,4=11\)
\(x=2,6\)
X x 6 - 4,99 = 25,01
X x 6 = 25,01 + 4,99
X x 6 = 30
X = 30 : 6
X = 5
Vậy X = 5.
( x + 8,4 ) : 5 = 2,2
x + 8,4 = 2,2 x 5
x + 8,4 = 11
x = 11 - 8,4
x = 2,6
Vậy x = 2,6.
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
a) \(x+\left(-7\right)=-20\)
\(\Rightarrow x=-20+7\)
\(\Rightarrow x=-13\)
Vậy \(x=-13\)
b) \(8-x=-12\)
\(\Rightarrow x=8-\left(-12\right)\)
\(\Rightarrow x=20\)
Vậy \(x=20\)
c) \(|x|-7=-6\)
\(\Rightarrow|x|=-6+7\)
\(\Rightarrow|x|=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1;-1\right\}\)
d) \(5^2.2^2-7.|x|=65\)
\(\Rightarrow\left(5.2\right)^2-7.|x|=65\)
\(\Rightarrow10^2-7.|x|=65\)
\(\Rightarrow100-7.|x|=65\)
\(\Rightarrow7.|x|=35\)
\(\Rightarrow|x|=5\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Vậy \(x\in\left\{5;-5\right\}\)
e) \(37-3.|x|=2^3-4\)
\(\Rightarrow37-3.|x|=8-4\)
\(\Rightarrow37-3.|x|=4\)
\(\Rightarrow3.|x|=33\)
\(\Rightarrow|x|=11\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy \(x\in\left\{11;-11\right\}\)
f) \(|x|+|-5|=|-37|\)
\(\Rightarrow|x|+5=37\)
\(\Rightarrow|x|=32\)
\(\Rightarrow\orbr{\begin{cases}x=32\\x=-32\end{cases}}\)
Vậy \(x\in\left\{32;-32\right\}\)
g)\(5.|x+9|=40\)
\(\Rightarrow|x+9|=8\)
\(\Rightarrow\orbr{\begin{cases}x+9=8\\x+9=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-17\end{cases}}\)
Vậy \(x\in\left\{-1;-17\right\}\)
h) \(-\frac{5}{6}+\frac{8}{3}+\frac{-29}{6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow\frac{-5}{6}+\frac{16}{6}+\frac{-29}{6}\le x\le\frac{-1}{2}+\frac{4}{2}+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
Vậy \(-3\le x\le4\)
a) \(\frac{x-1}{x+5}=\frac{6}{7}\)
7( x - 1 ) = 6( x + 5 )
7x - 7 = 6x - 30
7x - 6x = -30 + 7
x = -23
b) \(\frac{x^2}{6}=\frac{24}{25}\)
\(x^2.25=6.24\)
\(x^2.25=144\)
\(x^2=\frac{144}{25}\)
\(x=\sqrt{\frac{144}{25}}\)
\(x=\frac{12}{5}\)
c) \(\frac{x-2}{x-4}=\frac{x+4}{x+7}\)
\(\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-4\right)\)
\(x^2+7x-2x-14=x^2-4x+4x-16\)
\(x^2+5x-14=x^2^{ }-16\)
\(x^2-x^2+5x=-16+14\)
\(5x=-2\)\(x=\frac{-2}{5}\)
Tìm x :
a) X x 6 - 4,99 = 25,01
X x 6 = 25,01 + 4,99
X x 6 = 30
X = 30 : 6
X = 5
b) \(x\times6=\frac{7}{4}\)
\(x=\frac{7}{4}\div6\)
\(x=\frac{7}{24}\)
~ happy new year ~