Vẽ trên cùng một hệ trục tọa độ đồ thị của các hàm số :
a) y = -x
b) \(y=\frac{1}{2}x\)
c) \(y=\frac{-1}{2}x\)
GIÚP MÌNH NHA !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta vẽ đồ thị y = x với x ≥ 0.
Vẽ đồ thị y = -x với x ≤ 0.
Ta vẽ đồ thị y = x + 1 với x ≥ -1
Vẽ đồ thị y = -x – 1 với x ≤ -1.
a)
b) Ta có đường thẳng đi qua điểm H(0;-5) nên phương trình đường thẳng đi qua H là:
\(y=0x-5\Rightarrow y=-5\)
Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-x\) là:
\(-5=-x\)
\(\Rightarrow x=5\)
Tọa độ điểm A là (5;-5)
Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-\dfrac{1}{2}x\) là:
\(-5=-\dfrac{1}{2}x\)
\(\Rightarrow\dfrac{1}{2}x=5\)
\(\Rightarrow x=5:\dfrac{1}{2}\)
\(\Rightarrow x=10\)
Tọa độ điểm B là (10;-5)
c) Ta có: A(5;-5) và B(10;-5)
Độ dài đường thẳng AB là \(10-5=5\left(đvđd\right)\)
Có A(5;-5) ⇒ HA = 5 (đvđd)
Xét tam giác OHA vuông tại H áp dụng định lý Py-ta-go ta có:
\(OA^2=HA^2+OH^2\) (tọa độ điểm H(0;-5) nên OH = 5 đvđd)
\(\Rightarrow OA=\sqrt{5^2+5^2}=\sqrt{50}=5\sqrt{2}\left(đvđd\right)\)
Có B(10;-5) ⇒ HB = 10 (đvđd)
Xét tam giác OHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(OB^2=HB^2+OH^2\)
\(\Rightarrow OB=\sqrt{10^2+5^2}=\sqrt{125}=5\sqrt{5}\left(đvđd\right)\)
Chu vi: \(C_{OAB}=AB+OA+OB=5+5\sqrt{2}+5\sqrt{5}\approx23,25\left(đvđd\right)\)
Diện tích: \(S_{OAB}=\dfrac{1}{2}\cdot OH\cdot AB=\dfrac{1}{2}\cdot5\cdot5=12,5\left(đvdt\right)\)
a.Đồ thị hàm số y = ax (a ≠ 0) là đường thẳng đi qua gốc toạ độ.
b.giả sử x=1\(\Rightarrow y=2\) và\(\Rightarrow y=-2\)
sau đó đánh dấu các điểm của 2 hàm số trên lần lượt là m và n(trên cùng 1 mặt phẳng tọa độ xoy)
có m(1;2);n(1;-2)
bn tự vẽ hình nha như mk chỉ phía trên nha