chứng minh rằng
a) nx(n+2)x(n+7) chia hết cho 3
b) 5^n-1 chia hết cho 4
c) n^2+n+2 khong chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng
a) nx(n+2)x(n+7) chia hết cho 3
b) 5^n-1 chia hết cho 4
c) n^2+n+2 khong chia het cho 5
câu 1 k khó đâu , động não tí nhé
2 , a, mình cho bạn kết quả nhé cách làm mình k ghi đk . 1
Bài 2:
a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)
Mà số này lại chia hết cho 3 nên:
\(1+a+3+b=4+a+0=4+a\) ⋮ 3
TH1: \(4+a=6\Rightarrow a=2\)
TH2: \(4+a=9\Rightarrow a=5\)
TH3: \(4+a=12\Rightarrow a=8\)
Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\)
b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9
Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)
Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9
Với b = 0:
\(6+a+0=9\Rightarrow a=3\)
Với b = 5:
\(6+a+5=18\Rightarrow a=7\)
Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)
Bài 3:
a) \(13\cdot15\cdot17\cdot19+23\cdot26\)
\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)
Nên tổng chia hết cho 13 tổng là hợp số không phải SNT
b) \(17^{100}-34\)
\(=17\cdot\left(17^{99}-2\right)\)
Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT
Chứng minh rằng với mọi số TN n , ta có:
a) n(n+2)(n+7) chia hết cho 3
b) n2 +n+2 khong chia hết cho 5
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
a) =>n có dạng 3k,3k+1,3k+2 (k thuộc N)
-Nếu n có dạng 3k =>n chia hết cho 3 =>n(n+2)(n+7) chia hết cho 3
-Nếu n có dạng 3k+1=>n+2=3k+1+2=3k+3=3(k+1)
=>n+2 chia hết cho 3
=>n(n+2)(n+7) chia hết cho 3
-Nếu n có dạng 3k+2=>n+7=3k+2+7=3k+9=3(k+3)
=>n+7 chia hết cho 3
=>n(n+2)(n+7) chia hết cho 3
Vậy n(n+2)(n+7) chia hết cho 3
b)Vì 5 chia 4 dư 1 =>5n chia 4 dư 1
=>5n-1 chia hết cho 4
Vậy 5n-1 chia hết cho 4
c)Ta có:n2+n+2=n(n+1)+2
Vì n(n+1) là tích của 2 số liên tiếp => có tận cùng là 0,2 hoặc 6
=>n(n+1)+2 có tận cùng là 2,4 hoặc 8
Mà tận cùng là 2,4 hay 8 đều không chia hết cho 5
=>n(n+2)+2 không chia hết cho 5
=>n2+n+2 không chia hết cho 5
Vậy n2+n+2 không chia hết cho 5
-----------------The end------------------