Cho tam giác ABC cân tại A,trên BC lấy M.Từ M kẻ MH và MK lần lượt vuông góc với AB và AC.Cm MH+MK không đổi khi M di chuyển trên BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN
Làm xong nhớ tick cho mình đấy nhé !
a) Xét ∆ABM và ∆ACM, ta có :
AB = AC (vì ∆ABC cân tại A)
AM là cạnh chung
MB = MC (vì M là trung điểm của BC)
ð ∆ABM = ∆ACM (c.c.c)
b) Xét ∆AMH và ∆AMK, ta có :
Góc HAM = góc KAM
AM là cạnh chung
Góc AHM = góc AKM
ð ∆AMH = ∆AMK
ð MH = MK (g.c.g)
c) Trong ∆AJI, ta có :
Góc AJI = (180° - góc A) : 2 (1)
Trong ∆ABC, ta có :
Góc abc = (180° - góc A) : 2 (2)
Từ (1) và (2) => góc AJI = góc ABC
Mà 2 góc này ở vị trí đồng vị
ð IJ // BC
Ta có:
K trọng tâm của tam giác đều ABC
=>MH=1/3AG
MK=1/3AG
MI=1/3AG
=>MI+MK+MH=AG
nha bạn chúc bạn học tốt