Cho hình thoi ABCD có góc BAD=120. Gọi M là điểm nằm trên AB, hai đường thẳng DM và BC cắt nhau tại N,CM cắt AN tại E. CMR:
a)tam giác AMD đồng dạng tam giác CDN
b)AC^2=AM.CN]
c)AM.BC=AE.MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMD và Tam giác CDN có :
góc AMD =góc MDC (SLT)
góc BAD =góc DCB
=> tam giác AMD đồng dang tam giác CDN (gg)
=>AM/CD=AD/CN(1)
Ta có góc ADC =60 độ
mà AD=CD
=> tam giác ADC đều
=>AD=CD=AC
Thay vào(1) ta được AM/AC = AC/CN
=>AC^2=AM*CN
a: ABCD là hình vuông
=>AE là phân giác của góc BAD
=>góc ABE=góc DAE=45 độ
Xét ΔABE và ΔABD có
góc ABE chung
góc ADE=góc ABE=45 độ
=>ΔABE đồng dạng với ΔDBA
=>AB/BD=BE/AB
=>AB^2=BD*BE
b: góc EBM=góc MBA+góc ABE=135 độ
góc NDB=góc NDA+góc ADB=135 độ
=>góc EBM=góc NDB
Xét ΔBEM và ΔDNB có
góc EBM=góc NDB
góc BEM=góc DNB
=>ΔBEM đồng dạng với ΔDNB