Tìm x;y;z thoả mãn : \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LK
1
25 tháng 6 2015
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
7 tháng 9 2016
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
M
0
B
0
Bình phương hai vế ta được:
\(x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z=2\sqrt{yz}-2\sqrt{3}\)
\(VT\)là số hữu tỉ, \(VP\)là số vô tỉ, do đó đẳng thức trên chỉ xảy ra khi
\(\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4,y=1,z=3\\x=4,y=3,z=1\end{cases}}\).