K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

10 tháng 1 2016

chiều cao của hình tam giác ABC là 123

11 tháng 1 2016

giúp trả lời đầy đủ nha

10 tháng 1 2022

mình ko bt đây này

12 tháng 1 2022

Tam giác ABC vuông tại A nên chiều cao của hình đó là các cạnh AH, AB, AC.

Chu vi tam giác ABC = 120cm; BC = 50 cm nên tổng độ dài cạnh AB và AC có giá trị là :

120 - 50 = 70 (cm)

Coi độ dài cạnh AB là 3 phần bằng nhau thì độ dài cạnh AC bằng 4 phần như thế.

Tổng số phần bằng nhau là : 3 + 4 = 7 (phần)

Độ dài cạnh AB là : 70 : 7 x 3 = 30 (cm)

Độ dài cạnh AC là : 70 : 7 x 4 = 40 (cm)

Độ dài cạnh AH là : 30×45=24(cm)30×45=24(cm)

Đáp số : AB = 30cm; AC = 40cm; AH = 24cm.

HT

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

26 tháng 8 2021

26 tháng 8 2021

a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)

\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)

CH=32(cm)

\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)

\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)

b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)

\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)

\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

17 tháng 10 2017

Xét \(\widehat{ABC}\)vuông tại A , theo định lí pitago ta có:

BC2=AB2+AC2

225= 144 +  AC2 

AC2 = 225-144

        = 81

AC=9 cm

* Theo hệ thức lượng trong tam giác vuông ta có

\(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\)

\(\frac{1}{h^2}=\frac{1}{144}+\frac{1}{225}\)

\(h^2=\frac{144.225}{144+225}\approx87\)

* CH = AC/BC= 9 /15=3/5