Tìm n thuộc Z để phân số A=\(\frac{4n-1}{2n+3}\) có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)
Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên
=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-1;-2;1;-4\right\}\)
\(A=\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Vậy để A nguyên thì 2n+3\(\in\)Ư(5)
Mà Ư(5)={1;-1;5;-5}
=>2n+3={1;-1;5;-5}
Ta có bảng sau
2n+3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy n={-1;-2;-4;1}
Vì \(\frac{4n+1}{2n+3}\) là số nguyên nên \(4n+1⋮2n+3\)
\(\Rightarrow4n+6-5⋮2n+3\)
\(\Rightarrow2\left(2n+3\right)-5⋮2n+3\)
\(\Rightarrow5⋮2n+3\)
\(\Rightarrow2n+3\in\left\{\pm1;\pm5\right\}\)
Nếu 2n + 3 = 1 thì n = -1
Nếu 2n + 3 = -1 thì n = -2
Nếu 2n + 3 = 5 thì n = 1
Nếu 2n + 3 = -5 thì n = -4
Vậy \(n\in\left\{-1;-2;1;-4\right\}\)
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Để A là số nguyên thì
4n+1\(^._:\)2n+3
=>4n+6-5\(^._:\)2n+3
Vì 4n+6\(^._:\)2n+3
=>5\(^._:\)2n+3
=>2n+3\(\in\)Ư(5)={1;-1;5;-5}
Ta có bảng sau:
2n+3 | n |
1 | -1 |
-1 | -2 |
5 | 1 |
-5 | -4 |
KL: n\(\in\){-1;-2;1;-4}
Để \(\frac{4n-1}{2n+3}\)nhận giá trị nguyên thì
\(\Leftrightarrow\)4n-1 chia hết cho 2n+3
Ta có 4n-1=2(n-3)-5 chia hết cho 2n+3
\(\Rightarrow\)2n+3\(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
Vậy n={-2;-4;-1;1} thì \(\frac{4n-1}{2n+3}\)là số nguyên
hơi sai đó bạn ơi