K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

ta chuyển phép tính trên thành

(44x44/43x45)x(45x45/44x46)x(46x46/45x47)x(47x47/46x48)     

ta rút gọn thành

44x47/43x48 =2068/2064=517/516

 \(x^2-1=\left(x-1\right)\left(x+1\right)\)

Ta có: \(\left(\frac{1}{43.45}+1\right)\left(\frac{1}{44.46}+1\right)\left(\frac{1}{45.47}+1\right)\left(\frac{1}{46.48}+1\right)\)

\(=\left(\frac{44.44}{43.35}\right)\left(\frac{45.45}{44.46}\right)\left(\frac{46.46}{45.47}\right)\left(\frac{47.47}{46.48}\right)\)

\(=\frac{44.47}{43.48}\)

\(=\frac{517}{516}\)

27 tháng 3 2018

\(C=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{1999}\right)}\)=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{1001.1002.1003....2999}{1.2.3...1999}}\)

=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}}\)

=> \(C=\frac{2000.2001.2002....2999}{1.2.3...1000}.\frac{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}=1\)

Đáp số: C=1

20 tháng 2 2022

C=1

HT

28 tháng 3 2016

=\(-\frac{11}{20}\)

7 tháng 4 2018

a) =\(\frac{1}{2}.\frac{2}{3}.....\frac{2017}{2018}=\frac{1.2.....2017}{2.3.4.....2018}=\frac{1}{2018}\)

9 tháng 4 2018

a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}.\frac{2}{3}...\frac{2017}{2018}\)

\(=\frac{1.2...2017}{2.3...2018}\)

\(=\frac{1}{2018}\)

b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)

\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{189}{190}\)

\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{378}{380}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{7.4}{5.6}...\frac{18.21}{19.20}\)

\(=\frac{\left(1.2.3...18\right).\left(4.5.6...21\right)}{\left(2.3.4...19\right).\left(3.4.5...20\right)}\)

\(=\frac{1.21}{19.3}\)

\(=\frac{21}{57}\)

c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)

\(=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.\frac{56}{48}...\frac{2016}{2009}\)

mk ko bít làm câu c ! xin lỗi bn nha! bn tự nghĩ cách làm câu c giúp mk nhé!

18 tháng 5 2017

   \(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{5}\right).\left(1-\frac{1}{7}\right)...\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{120}\right)\)

\(=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{119}{120}=\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{118}{119}\right).\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{119}{120}\right)\)

 \(=\frac{\left(2.4.6...118\right).\left(1.3.5...119\right)}{\left(3.5.7...119\right).\left(2.4.6...120\right)}=\frac{1}{120}\).

Đáp số: \(\frac{1}{120}\).

18 tháng 5 2017

Cảm ơn Neko-sama !