K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

hinh nhu de phai la 2x+5y

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

9 tháng 3 2022

Đặt a2=2x+5y

-Nếu x=0⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)

Nếu n=0→5m−1=2⇒5m=3 (vô lý)

Nếu n≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại

Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.

-Nếu x>3

  +) Với y lẻ: Đặt y=2k+1 (kN). Ta có: a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)a2 không là số chính phương loại.

  +) Với y chẵn: Đặt y=2k (kN)⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0