K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Đề sai khỏi làm

26 tháng 5 2019

Đề bài hình như sai phải không '' WINTER '' nhỉ ?

NV
29 tháng 2 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

28 tháng 9 2015

xem lại đề đi bạn sai dấu thì phải

28 tháng 9 2015

Xét hiệu:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{c}{b}-\frac{a}{c}=\frac{a-c}{b}+\frac{b-a}{c}+\frac{c-b}{a}\)

\(=\frac{ca.\left(a-c\right)}{abc}+\frac{ab.\left(b-a\right)}{abc}+\frac{bc.\left(c-b\right)}{abc}\)\(=\frac{a^2c-c^2a}{abc}+\frac{b^2a-a^2b}{abc}+\frac{c^2b-b^2c}{abc}\)

\(=\frac{a^2c-c^2a+b^2a-a^2b+c^2b-b^2c}{abc}\)\(=\frac{\left(a^2c-b^2c\right)+\left(-c^2a+c^2b\right)+\left(b^2a-a^2b\right)}{abc}\)

\(=\frac{c.\left(a-b\right)\left(a+b\right)-c^2.\left(a-b\right)-ab.\left(a-b\right)}{abc}\)\(=\frac{\left(a-b\right)\left[c.\left(a+b\right)-c^2-ab\right]}{abc}\)

\(=\frac{\left(a-b\right)\left(ac+bc-c^2-ab\right)}{abc}\)\(=\frac{\left(a-b\right)\left[\left(ac-c^2\right)+\left(bc-ab\right)\right]}{abc}\)

\(=\frac{\left(a-b\right)\left[c.\left(a-c\right)-b.\left(a-c\right)\right]}{abc}\)\(=\frac{\left(a-b\right)\left(a-c\right)\left(c-b\right)}{abc}\)

ta thấy \(a\ge b\ge c>0\Rightarrow abc>0\)

\(a-b\ge0\left(a\ge b\right);a-c\ge0\left(a\ge b\ge c\right);c-b\le0\left(b\ge c\right)\)\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(c-b\right)\le0\)

\(\text{Suy ra: }\frac{\left(a-b\right)\left(a-c\right)\left(c-b\right)}{abc}\le0\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\le\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

có thể sai đề

21 tháng 4 2019

a)Chứng minh BĐT phụ sau: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) (m,n>0)  (*)

\(\Leftrightarrow\frac{p^2n+q^2m}{mn}-\frac{p^2+2pq+q^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{p^2n\left(m+n\right)+q^2m\left(m+n\right)-p^2mn-2pqmn-q^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(pq\right)^2-2.qp.mn+\left(qm\right)^2}{mn\left(m+n\right)}\ge0\Leftrightarrow\frac{\left(pn-qm\right)^2}{mn\left(m+n\right)}\ge0\) (đúng)

Dấu "=" xảy ra khi pn = qm.

Áp dụng BĐT (*) 2 lần,ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

21 tháng 4 2019

b) Có cách này như mình không chắc:

Chuẩn hóa abc = 1.Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

Ta cần chứng minh: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}\ge2.\frac{z}{x}\) (Cô si)

\(\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge2.\frac{x}{y}\)

\(\frac{y^2}{x^2}+\frac{x^2}{z^2}\ge2.\frac{y}{z}\)

Cộng theo vế 3 BĐT trên,ta được:\(2\left(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\right)\ge2\left(\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\right)\)

Suy ra \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y^2}{x^2}=\frac{z^2}{y^2}\\\frac{z^2}{y^2}=\frac{x^2}{z^2}\end{cases}\Leftrightarrow}\frac{y^2}{x^2}=\frac{z^2}{y^2}=\frac{x^2}{z^2}\Leftrightarrow\frac{y}{x}=\frac{z}{y}=\frac{x}{z}\Leftrightarrow a=b=c\)

14 tháng 11 2018

Áp dụng BĐT AM-GM,ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{abc}{bca}}=3\) (1)

\(\frac{a+b}{b+c}+\frac{b+c}{c+a}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)}}=2\)

\(\Leftrightarrow VP\ge3\) (2). Trừ theo vế (1) và (2),ta được: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{a+b}{b+c}-\frac{b+c}{c+a}-1\ge0\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{c+a}+1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c

21 tháng 10 2020

https://olm.vn/hoi-dap/detail/263385033080.html . Tham khảo Inequalities.