K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Đề sai khỏi làm

26 tháng 5 2019

Đề bài hình như sai phải không '' WINTER '' nhỉ ?

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

4 tháng 12 2017

Ta có: \(VT=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ca}+\frac{c^2}{ca+cb}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

\(\RightarrowĐPCM\)

15 tháng 6 2020

Đặt \(f\left(a,b,c\right)=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)và \(t=\frac{a+b}{2}\)

Khi đó thì \(f\left(t,t,c\right)=\frac{t}{t+c}+\frac{t}{t+c}+\frac{c}{2t}=\frac{2t}{t+c}+\frac{c}{2t}\)

Ta có: \(f\left(a,b,c\right)=\frac{\left(a^2+b^2\right)+c\left(a+b\right)}{c^2+ab+c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{4\left(a^2+b^2\right)+4c\left(a+b\right)}{4c^2+4ab+4c\left(a+b\right)}+\frac{c}{a+b}\)

\(\ge\frac{2\left(a+b\right)^2+4c\left(a+b\right)}{4c^2+\left(a+b\right)^2+4c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{8t^2+8tc}{4c^2+4t^2+8tc}+\frac{c}{2t}\)

\(=\frac{2t^2+2tc}{c^2+t^2+2tc}+\frac{c}{2t}=\frac{2t\left(t+c\right)}{\left(t+c\right)^2}+\frac{c}{2t}\)\(=\frac{2t}{t+c}+\frac{c}{2t}=f\left(t,t,c\right)\)

Do đó \(f\left(a,b,c\right)\ge f\left(t,t,c\right)\)

Ta cần chứng minh: \(f\left(t,t,c\right)=\frac{2t}{t+c}+\frac{c}{2t}\ge\frac{3}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(t-c\right)^2}{2t\left(t+c\right)}\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c

21 tháng 4 2019

a)Chứng minh BĐT phụ sau: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) (m,n>0)  (*)

\(\Leftrightarrow\frac{p^2n+q^2m}{mn}-\frac{p^2+2pq+q^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{p^2n\left(m+n\right)+q^2m\left(m+n\right)-p^2mn-2pqmn-q^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(pq\right)^2-2.qp.mn+\left(qm\right)^2}{mn\left(m+n\right)}\ge0\Leftrightarrow\frac{\left(pn-qm\right)^2}{mn\left(m+n\right)}\ge0\) (đúng)

Dấu "=" xảy ra khi pn = qm.

Áp dụng BĐT (*) 2 lần,ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

21 tháng 4 2019

b) Có cách này như mình không chắc:

Chuẩn hóa abc = 1.Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

Ta cần chứng minh: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}\ge2.\frac{z}{x}\) (Cô si)

\(\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge2.\frac{x}{y}\)

\(\frac{y^2}{x^2}+\frac{x^2}{z^2}\ge2.\frac{y}{z}\)

Cộng theo vế 3 BĐT trên,ta được:\(2\left(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\right)\ge2\left(\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\right)\)

Suy ra \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y^2}{x^2}=\frac{z^2}{y^2}\\\frac{z^2}{y^2}=\frac{x^2}{z^2}\end{cases}\Leftrightarrow}\frac{y^2}{x^2}=\frac{z^2}{y^2}=\frac{x^2}{z^2}\Leftrightarrow\frac{y}{x}=\frac{z}{y}=\frac{x}{z}\Leftrightarrow a=b=c\)

1 tháng 1 2020

Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+a-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
Áp dụng bất đẳng thức : Với n là số nguyên dương : a1,a2,....,an ; Ta có :

\(\left(a_1+a_2+....+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2\left(n\ge2\right)\)
Quay trở lại bài, ta có : \(\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\ge\frac{1}{2}.3^2-3=\frac{9}{2}-3=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

1 tháng 1 2020

Dòng đầu sửa chỗ +a thành +1 hộ mk nha mk ấn nhầm

NV
21 tháng 4 2019

\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2a}}=\frac{2}{b}\); \(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\); \(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\)

Cộng lại:

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

7 tháng 12 2018

Áp dụng bất dẳng thức Cauchy - Schwartz dạng engel, ta có: 

 \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi: \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\) 

30 tháng 3 2020

zzzzzz