Có bao nhiêu cách chọn 3 số nguyên phân biệt từ {100,101,102, ..., 1 9 9, 20 0} sao cho tổng của 3 số đó chia hết cho 3?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var i,n,d:longint;
begin
d:=0;
writeln('nhapn=');read(n);
for i:=1 to n do
begin
if i mod 3=0 then write(i,' ');
if i mod 3=0 then d:=d+i;
end;
writeln('tong=',d);
readln;
end;
Cách 1:
Một số chia hết cho Ư(6) và số còn lại cũng chia hết cho Ư(6)
Ví dụ: Số chia hết cho 2 với số chia hết cho 3, số chia hết cho 1 với số chia hết cho 6, ...
Cách 2:
Chọn hai số trong đó có một hoặc cả hai số chia hết cho 6
Ví dụ: 120 và 111
Cách 3:
Chọn hai số trong đó có một hoặc cả hai số chia hết cho B(6)
Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.
Có hai trường hợp để tìm số thỏa mãn:
Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.
Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.
Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.
Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)
Số có 3 chữ số chia hết cho 3 khi:
TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số
TH2: 3 chữ số của nó thuộc 3 tập phân biệt:
Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách
Hoán vị 3 chữ số có: \(3!=6\) cách
\(\Rightarrow27.6=162\) số
Như vậy có tổng cộng \(18+162=180\) số thỏa mãn
Ta chia thành 3 nhóm: chia hết cho \(3\)gồm \(\left\{102,105,...,198\right\}\)có \(33\)phần tử, chia \(3\)dư \(1\)gồm \(\left\{100,103,...,199\right\}\)\(34\)phần tử, chia \(3\)dư \(2\)gồm \(\left\{101,104,...,200\right\}\)có \(34\)phần tử.
Để \(3\)số nguyên được chọn có tổng chia hết cho \(3\)thì ta có hai trường hợp:
- cả \(3\)số được chọn cùng một nhóm: có số cách là: \(\frac{33.32.31}{6}+\frac{34.33.32}{6}+\frac{34.33.32}{6}\).
- \(3\)số được chọn mỗi số thuộc một nhóm, có số cách chọn là: \(33.34.34\).
Có tổng số cách là: \(55572\)cách.