Tính giá trị của tổng sau : \(1.2+2.3+3.4+...+n.\left(n+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức :
\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}=\frac{n-1}{n}\)
- Nguyễn Thị Thu Chi
- S=1.2+2.3+3.4+.............+n(n+1)
S =1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
S =(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
ko chắc chắn lắm
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n+1\right)}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
= 1 - \(\dfrac{1}{n+1}\) = \(\dfrac{n}{n+1}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
Gọi A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
4A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
=> 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)[(n+3)-(n-1)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
4A+1=n(n+1)(n+2)(n+3)+1=n4+6.n3+11.n2+6n+1=(n2+3n+1)2
=>\(\sqrt{4A+1}\)=n2+3n+1
- Với \(n=1\Rightarrow1.2=\frac{1.2.3}{3}\) (đúng)
- Giả sử đúng với \(n=k\) hay \(1.2+...+k\left(k+1\right)=\frac{k\left(k+1\right)\left(k+2\right)}{3}\)
Ta cần chứng minh nó đúng với \(n=k+1\) hay:
\(1.2+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy:
\(1.2+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)\)
\(=\frac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\)
\(=\left(k+1\right)\left(k+2\right)\left[\frac{k}{3}+1\right]=\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\) (đpcm)
Đặt tổng trên là A
Có : 3A = 1.2.3+2.3.3+....+n.(n+1).3
= 1.2.3+2.3.(4-1)+......+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4-1.2.3+.....+n.(n+1).(n+2)-(n-1).n.(n+1)
= n.(n+1).(n+2)
=> A = n.(n+1).(n+2)/3
Tk mk nha
Đặt A=1.2+2.3+...+n(n+1)
3A=1.2.3+2.3.3+...+n(n+1).3
3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n+2)-(n-1)]
3A=1.2.3-0.1.2+2.3.4-1.2.3+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=[1.2.3+2.3.4+...+n(n+1)(n+2)]-[0.1.2+1.2.3+...+(n-1)n(n+1)]
3A=n(n+1)(n+2)-0.1.2
3A=n(n+1)(n+2)
A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)