Cho a+b=1. Tính giá trị M= 2(a^3+b^3) - 3(a^2+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Câu 1: cho a+ b= 1
Tính giá trị biểu thức:
M= 2(a^3+ b^3)- 3( a^2+ b^2)
* Câu 2: cho ab+ bc+ ac= 1
A= (1+ a^2)(1+ b^2)(1+ c^2)
CMR: A là số chính phương
* Câu 3: a) Tìm x: (x^2+ x)^2+ 4(x^2+ x)= 12
* Câu 4: cho tam giác ABC vuông tại A. AH là đường cao. I là trung điểm của HC. Kẻ BA vuông góc với BK sao cho BK= 1/2AC.
*Câu 1: cho a+ b= 1
Tính giá trị biểu thức:
M= 2(a^3+ b^3)- 3( a^2+ b^2)
* Câu 2: cho ab+ bc+ ac= 1
A= (1+ a^2)(1+ b^2)(1+ c^2)
CMR: A là số chính phương
* Câu 3: a) Tìm x: (x^2+ x)^2+ 4(x^2+ x)= 12
* Câu 4: cho tam giác ABC vuông tại A. AH là đường cao. I là trung điểm của HC. Kẻ BA vuông góc với BK sao cho BK= 1/2AC.
Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)
\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)
\(\Leftrightarrow M=a^2-ab+3ab+b^2\)
\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)
Vậy: Khi a+b=1 thì M=1
M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2
=1-3ab+3ab(1-2ab)+6a^2b^2
=1
Ta có a+b=1
=>>>> a^2+2ab+b^2=1
=>>>>a^2+2ab+b^2-3ab=1-3ab=a^2+b^2-ab
M=2*(a+b)(a^2+b^2-ab)-3*[(a+b)^2-2ab]
M=2*1*(1-3ab)-3*(1-2ab)
M=2-6ab-3+6ab
M=-1
dung ko ban cho minh mot hahaha
1. a) M = A + B = x3 - 2x2 + 1 + 2x2 - 1 = x3
b) Thay x = 1/2 vào M => M = (1/2)3 = 1/8
c) Khi M = 0
=> x3 = 0
=> x = 0
2. Sửa đề : B = -x3 + x2
a) M = A + B = x3 - x2 - 2x + 1 - x3 + x2 = - 2x + 1
b) Thay x = 1 vào M => M = - 2.1 + 1 = -1
c) Để M = 0
=> - 2x + 1 = 0
=> 2x = 1
=> x = 0,5
Vậy x = 0,5 thì M = 0
sorry bn nha mk viết thiếu đề bài 2
B= -x^3 +x^2
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)
Bài làm :
M = 2 (a + b ) ( a ^ 2 + b ^ 2 - ab ) - 3 ( a + b )^2 + 6ab
= 2 ( a + b )^2 - 6ab - 3 + 6ab
= 2 - 3
= -1 .
vậy a + b = - 1 .
M= 2(a^3+b^3)- 3(a^+b^2)
M= 2*(a+b)^3- 3(a+b)^2
M= 2*(1)^3- 3(1)^2 ( theo đề bài a+b=1)
M=2*1-3*1
M=2-3
M=-1