K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

\(pt\Leftrightarrow\left(16x^2+24x+9\right)\left(2x^2+3x+1\right)=810\)

\(\Leftrightarrow32x^4+48x^3+16x^2+48x^3+72x^2+24x+18x^2+27x+9-810=0\)

\(\Leftrightarrow32x^4+96x^3+106x^2+51x-801=0\)

\(\Leftrightarrow32x^4+96x^3+106x^2+318x-267x-801=0\)

\(\Leftrightarrow\left(x+3\right)\left(32x^3+106x-267\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-3\right)\left(16x^2+24x+189\right)=0\)

Vì \(16x^2+24x+89=\left(4x+3\right)^2+80\ge80\) nên \(\orbr{\begin{cases}x+3=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{3}{2}\end{cases}}\)

Ta có: \(\left(4x+3\right)^2\left(x+1\right)\left(2x+1\right)=810\)

\(\Leftrightarrow\left(16x^2+24x+9\right)\left(2x^2+3x+1\right)=810\)

Đặt \(a=2x^2+3x+1\)

\(\Rightarrow\left(8a+1\right)a=810\)

\(\Leftrightarrow8a^2+a-810=0\)

\(\Leftrightarrow\left(a-10\right)\left(8a+81\right)=0\)

\(\Rightarrow\left(2x^2+3x-9\right)\left(16x^2+24x+189\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-3\right)\left(16x^2+24x+189\right)=0\)

Lại có: \(16x^2+24x+189=\left(4x+3\right)^2+80>0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=\frac{3}{2}\end{cases}}\)

a: \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)

\(\Leftrightarrow21\left(x+13\right)=7\left(2x-1\right)-3\left(5x+2\right)\)

\(\Leftrightarrow21x+273=14x-7-15x-6=-x-13\)

=>22x=-286

hay x=-13

b: \(\dfrac{2x-3}{3}-\dfrac{x-3}{6}=\dfrac{4x+3}{5}-17\)

\(\Leftrightarrow10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)

\(\Leftrightarrow20x-30-5x+15=24x+18-510\)

\(\Leftrightarrow15x-15=24x-492\)

=>-9x=-477

hay x=53

4 tháng 5 2021

ta có: x4-4x3-2x2+12x+9 < x4-4x3-2x2+15x-3

=> x4-4x3-2x2+15x-3 - (x4-4x3-2x2+12x+9) > 0

=> 3x+6>0

(đề bài có cho điều kiện của x thì chứng minh 3x+6>0 là xong ạ)

4 tháng 5 2021

Ta có: \(\left(x^2-2x-3\right)^2< x^2\left(x^2-4x-2\right)+3\left(5x-1\right)\)

\(\Leftrightarrow x^4+4x^2+9-4x^3-6x^2+12x< x^4-4x^3-2x^2+15x-3\)

\(\Leftrightarrow3x-12>0\)

\(\Leftrightarrow x-4>0\Rightarrow x>4\)

Vậy x > 4

9 tháng 11 2017

a) | 2x - 3 | = x - 5

Bình phương hai vế phương trình đã cho ta được phương trình hệ quả . Ta có :

| 2x - 3 | = x - 5 \(\Rightarrow\) ( 2x - 3 )2 = ( x - 5 )2

\(\Leftrightarrow\) 4x2 - 12x + 9 = x2 - 10x + 25 

\(\Leftrightarrow\) 3x2 - 2x - 16 = 0

Phương trình cuối có hai nghiệm x1 = -2 ; x2 = 8/3

Vậy phương trình trên là vô nghiệm

13 tháng 2 2020

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

13 tháng 2 2020

Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)

NV
10 tháng 1 2021

\(3x^3+6x^2-12x+8=0\)

\(\Leftrightarrow4x^3=x^3-6x^2+12x-8\)

\(\Leftrightarrow4x^3=\left(x-2\right)^3\)

\(\Rightarrow\sqrt[3]{4}.x=x-2\)

\(\Rightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)

\(4+2x\left(2x+4\right)=-x\)

\(4+2x.2x+8x=-x\)

\(4x+8x+x=-4\)

\(13x=-4\)

\(x=-\frac{4}{13}\)

 Vậy pt có nghiệm là { -4/13 }

24 tháng 2 2020

2) mình nghĩ thế này

(2x-3)^2=2x-3

Đẻ 2 cái trên = nhau thfi 

2x-3=1

=> x=2

20 tháng 7 2016

a) =>(x+3)(x-2)-2(x+1)2=(x-3)2-2x(x-2)

=>x2+x-6-2(x2+2x+1)=x2-6x+9-2x2+4x

=>x2+x-6-2x2-4x-2-x2+6x-9+2x2-4x=0

=>-x-17=0

=>x=-17

 

20 tháng 7 2016

=>x3-6x2+12x-8+x2-10x+25=x3-5x2-7x+3

=>x3-5x2+2x+17-x3+5x2+7x-3=0

=>9x+14=0

=>x=\(-\frac{14}{9}\)