- cho ba số a,b,c thoả \(\hept{\begin{cases}1\le a,b,c\le3\\a+b+c=6\end{cases}}\)chứng minh rằng \(a^2\)+\(b^2+c^2\le14\)
- cho x , y là các số nguyên khác 1 thoả mãn ((x^2 -1)/(y+1)) +(y^2 -1)/(x+1) là số nguyên. CM rằng x^2*y^22 -1 chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow a^2+b^2+c^2+\left(a+b+c\right)=a^2+b^2+c^2\)
\(\Leftrightarrow a+b+c=0\left(1\right)\)
Lại có:\(\hept{\begin{cases}a^2+a=b^2\\b^2+b=c^2\\c^2+c=a^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2-b^2=-a\\b^2-c^2=-b\\c^2-a^2=-c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right).\left(a+b\right)=-a\\\left(b-c\right).\left(b+c\right)=-b\\\left(c-a\right).\left(c+a\right)=-c\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)=-\frac{a}{a+b}\\\left(b-c\right)=-\frac{b}{b+c}\\\left(c-a\right)=-\frac{c}{a+c}\end{cases}}\)
Từ (1) \(\Rightarrow\left(a-b\right).\left(b-c\right).\left(c-a\right)=-\left(\frac{a}{a+b}\cdot\frac{b}{b+c}\cdot\frac{c}{a+c}\right)=\frac{-abc}{-c.\left(-a\right).\left(-b\right)}=1\)
1,https://diendantoanhoc.net/topic/157361-t%C3%ACm-c%C3%A1c-s%E1%BB%91-nguy%C3%AAn-x-y-tho%E1%BA%A3-m%C3%A3n-x3y32016/
Ta có
n4 + 4 = n4 + 4n2 + 4 – 4n2
= (n2 + 2 )2 – (2n)2
= (n2 + 2 – 2n )(n2 + 2 + 2n)
Vì n4 + 4 là số nguyên tố nên n2 + 2 – 2n = 1 hoặc n2 + 2 + 2n = 1
Mà n2 + 2 + 2n > 1 vậy n2 + 2 – 2n = 1 suy ra n = 1
Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố
Vậy với n = 1 thì n4 + 4 là số nguyên tố.
#)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
Bạn xem lại đề nhé :
Phương trình \(b^3-3b^2+5b+11=0\)không có nghiệm dương nhé
\(VT=b\left(b-\frac{3}{2}\right)^2+\frac{11}{4}b+11>0\forall b>0\)