Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
n4 + 4 = n4 + 4n2 + 4 – 4n2
= (n2 + 2 )2 – (2n)2
= (n2 + 2 – 2n )(n2 + 2 + 2n)
Vì n4 + 4 là số nguyên tố nên n2 + 2 – 2n = 1 hoặc n2 + 2 + 2n = 1
Mà n2 + 2 + 2n > 1 vậy n2 + 2 – 2n = 1 suy ra n = 1
Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố
Vậy với n = 1 thì n4 + 4 là số nguyên tố.
Ta có:
ab - ac + bc - c2 = -1
=> a.(b - c) + c.(b - c) = -1
=> (b - c).(a + c) = -1
=> b - c = 1; a + c = -1 hoặc b - c = -1; a + c = 1
=> (b - c) + (a + c) = 1 + (-1) hoặc (b - c) + (a + c) = -1 + 1
=> b + a = 0
=> a và b là 2 số đối nhau
=> \(\frac{a}{b}=-1\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1
a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*
=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
b) tương tự ta có \(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)
\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
bài 2 chịu
Đặt: \(k=\frac{a^2+b^2}{ab+1}\) , \(k\in Z\)
Giả sử, k không là số chính phương.
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu
\(S=a,b\in NxN\)| \(\frac{a^2+b^2}{ab+1}=k\)
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+B đạt min
Giả sử: \(A\ge B>0\). Cố định B ta còn số A thảo phương trình \(k=\frac{x+B^2}{xB+1}\)
\(\Leftrightarrow x^2-kBx+B^2-k=0\)phương trình có nghiệm là A.
Theo Viet: \(\hept{\begin{cases}A+x_2=kB\\A.x_2=B^2-k\end{cases}}\)
Suy ra: \(x_2=kB-A=\frac{B^2-k}{A}\)
Dễ thấy x2 nguyên.
Nếu x2 < 0 thì \(x_2^2-kBx_2+B^2-k\ge x_2^2+k+B^2-k>0\) vô lý. Suy ra: \(x_2\ge0\) do đó \(x_2,B\in S\)
Do: \(A\ge B>0\Rightarrow x_2=\frac{B^2-k}{A}< \frac{A^2-k}{A}< A\)
Suy ra: \(x_2+B< A+B\) (trái với giả sử A+BA+B đạt min)
Suy ra kk là số bình phương
a) Ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\left(1\right)\)
\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\)
\(\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)
\(\Leftrightarrow7.\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)
Vì \(0< \frac{\overline{bc}}{\overline{ab}}< 10\)
\(\Leftrightarrow0< 7.\overline{ac}-1000< 10\)
\(\Leftrightarrow100< 7.\overline{ac}< 110\)
\(\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)
\(\Leftrightarrow\overline{ac}=15\)
Thay vào \(\left(1\right)\) ta được:
\(\overline{1bb5}=\overline{1b}.15.7\)
\(\Leftrightarrow1005+110b=1050+105b\)
\(\Leftrightarrow5b=45\Leftrightarrow b=9\)
Vậy: \(\left\{\begin{matrix}a=1\\b=9\\c=5\end{matrix}\right.\)
b) Vì \(2012;92\in B\left(4\right)\)
\(\Rightarrow2012^{2015};92^{94}\in B\left(4\right)\)
\(\Rightarrow\left\{\begin{matrix}2012^{2015}=4m\left(m\ne0\right)\\92^{96}=4n\left(n\ne0\right)\end{matrix}\right.\)
Khi đó: \(7^{2012^{2015}}-3^{92^{94}}=7^{4m}-7^{4n}=\left(...1\right)-\left(...1\right)=0\)
Vì \(7^{2012^{2015}}-3^{92^{94}}\) có tận cùng \(=0\Rightarrow7^{2012^{2015}}-3^{92^{94}}⋮10\)
Dễ thấy: \(7^{2012^{2015}}-3^{92^{94}}>0\) Mà \(7^{2012^{2015}}-3^{92^{94}}⋮10\)
\(\Rightarrow A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)=5k\left(k\in N\right)\)
Vậy \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\) là số tự nhiên chia hết cho \(5\) (Đpcm)