K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Ta có (n+1)4+n4+1= (n+1)4-n2+(n4+n2+1)

= (n2+2n+1)2-n2+(n4+n3+n2-n3-n2-n+n2+n+1)

= (n2+3n+1)(n2+n+1)+[n2(n2+n+1)-n(n2+n+1)+(n2+n+1)]

= (n2+3n+1)(n2+n+1)+(n2+n+1)(n2-n+1)

= (n2+n+1)(2n2+2n+2)

= 2(n2+n+1)2

Do 2 không phải là bình phương của một số tự nhiên nên (n+1)4+n4+1 không là bình phương của một số tự nhiên

Vậy (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên

11 tháng 1 2018

Mk thêm vào một chút nhé. 

Do 2 ko là bình phương của một số tự nhiên và n khác 0 nên 2(n2+n+1)2 ko là bình phương của một số tự nhiên n khác 0

=> (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên khác 0

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

19 tháng 4 2020

Ta có : 

\(\left(n+1\right)^4+n^4+1=\left(n+1\right)^4-n^2+n^4+n^2+1\)

\(=\left(n^2+2n+1\right)^2-n^2+n^4+n^2+1=\left(n^2+n+1\right)\left(n^2+3n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)

\(=\left(n^2+n+1\right)\left(2n^2+2n+2\right)=2\left(n^2+n+1\right)^2⋮\left(n^2+n+1\right)^2\)

14 tháng 8 2017

https://olm.vn/hoi-dap/question/997557.html

Trong đây mình đã làm bài như vậy rồi nhé ! :D

14 tháng 8 2017

Giải giúp mình đi các pạn !!!

22 tháng 1 2018

A = [n.(n+3)] . [(n+1).(n+2)]

   = (n^2+3n).(n^2+3n+2) > (n^2+3n)^2    (1)

Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2    (2)

Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2

=> A ko phải là số chính phương

Tk mk nha

3 tháng 9 2017

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)

là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)

9 tháng 4 2018

A = n n + 1 n + 2 n + 3

= n n + 3 n + 1 n + 2

= n 2 + 3n n 2 + 3n + 2

= n 2 + 3n 2 − 2 n 2 + 3n

= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm) 

3 tháng 7 2015

Bạn cho nhiều bài quá !

13 tháng 7 2015

6) (n-1)^3 < (n-1)n(n+1) = n(n^2 -1) = n^3-n < n^3

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ;