Phân tích các đa thức sau thành nhân tử:
x3−2x2+x−xy2x3−2x2+x−xy2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h: \(=\left(x+3\right)\cdot\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
x3 – 2x2 + x – xy2
(Có nhân tử chung x)
= x(x2 – 2x + 1 – y2)
(Có x2 – 2x + 1 là hằng đẳng thức).
= x[(x – 1)2 – y2]
(Xuất hiện hằng đẳng thức (3))
= x(x – 1 + y)(x – 1 – y)
\(x^3-y^3+2x^2+2xy\)
\(=x\left(x^2-y^2+2x+2y\right)\)
\(=\)\(x\left[\left(x+y\right)\left(x-y\right)+2\left(x+y\right)\right]\)
\(=x\left(x+y\right)\left(x-y+2\right)\)
x3 – 2x2 + x
= x.x2 – x.2x + x (Xuất hiện nhân tử chung là x)
= x(x2 – 2x + 1) (Xuất hiện hằng đẳng thức (2))
= x(x – 1)2
\(x^3+2x^2+x\)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
\(=\left(2x^2+xy-3x\right)-\left(22xy+11y^2-33y\right)+\left(2x+y-3\right)\)
\(=x\left(2x+y-3\right)-11y\left(2x+y-3\right)+\left(2x+y-3\right)\)
\(=\left(x-11y+1\right)\left(2x+y-3\right)\)
b: \(=2x^2-2x-5x+5\)
\(=\left(x-1\right)\left(2x-5\right)\)
\(a,=x\left(x^2-4\right)+ax\left(x-2\right)\\ =x\left(x-2\right)\left(x+2\right)+ax\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+ax\right)\\ =x\left(x+a+2\right)\left(x-2\right)\\ b,=2x^2-2x-5x+5\\ =2x\left(x-1\right)-5\left(x-1\right)\\ =\left(2x-5\right)\left(x-1\right)\\ c,=\left(x+3\right)\left(x^2-3x+9\right)+\left(x-3\right)\left(x+3\right)\\ =\left(x+3\right)\left(x^2-2x+6\right)\)
x3 - 2x2 + x - xy2
= x(x2 - 2x + 1 - y2)
= x[(x - 1)2 - y2]
= x(x + y - 1)(x - y - 1)
\(x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)