1, Cho a1+a2+..........+a50+a51=0
Biết a1+a2=a3+a4=a5+a6+..........=a49+a50+a51=1
Tính a50?
Câc bạn giúp mk với nhé! cảm ơn các bạn nhiều nếu ai trả lời đúng và chính xác thì mk sẽ tick cho người đó nha! @-@
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: a1 + a2 + a3 + ... + a49 + a50 + a51 = 0
Xét tổng: ( a1 + a2 ) + ( a3 + a4 ) + ...+ ( a49 + a50 ) = 1 . 25 = 25 ( vì có 25 cặp )
Tổng: a1 + a2 + a3 + ... + a49 + a50 + a51 = 0
hay: 25 + a51 = 0
a51 = 0 - 25
a51 = -25
Khi đó, ta thay: a50 + a51 = 1
bằng: a50 + ( -25 ) = 1
a50 = 1 - ( -25 )
a50 = 26
Vậy: a50 = 26
Để chứng minh CMR này, chúng ta sẽ xem xét các trường hợp khác nhau khi n chia hết cho 4 và khi n không chia hết cho 4. Trường hợp 1: n chia hết cho 4 (n = 4k) Trong trường hợp này, chúng ta có n số a1, a2, a3, ..., an. Ta cần tính giá trị Sn = a1.a2 + a2.a3 + a3.a4 + ... + an.a1. Chú ý rằng mỗi số a1, a2, a3, ..., an xuất hiện đúng 2 lần trong Sn. Vì vậy, ta có thể viết lại Sn thành: Sn = (a1.a2 + a3.a4) + (a5.a6 + a7.a8) + ... + (an-1.an + a1.a2) Trong mỗi cặp số (ai.ai+1 + ai+2.ai+3), khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Vì vậy, tổng của mỗi cặp số này sẽ luôn bằng 2. Vậy Sn = 2k = 0 khi và chỉ khi n chia hết cho 4. Trường hợp 2: n không chia hết cho 4 (n = 4k + m, với m = 1, 2, 3) Trong trường hợp này, chúng ta cũng có thể viết lại Sn thành: Sn = (a1.a2 + a3.a4) + (a5.a6 + a7.a8) + ... + (an-1.an + a1.a2) + an.a1 Nhưng lần này, chúng ta còn có thêm một số cuối cùng là an.a1. Xét mỗi cặp số (ai.ai+1 + ai+2.ai+3), khi nhân hai số bằng nhau, ta vẫn có kết quả là 1. Nhưng khi nhân số cuối cùng an.a1 với một số bằng -1, ta có kết quả là -1. Vì vậy, tổng của mỗi cặp số là 2, nhưng khi cộng thêm số cuối cùng an.a1, tổng sẽ có thể là 2 - 1 = 1 hoặc 2 + 1 = 3. Vậy Sn = 1 hoặc 3, không bao giờ bằng 0 khi n không chia hết cho 4. Từ hai trường hợp trên, ta có thể kết luận rằng Sn = 0 khi và chỉ khi n chia hết cho 4
Để chứng minh CMR này, chúng ta sẽ xét các trường hợp khác nhau khi n chia hết cho 4 và khi n không chia hết cho 4. Trường hợp 1: n chia hết cho 4 (n = 4k) Trong trường hợp này, chúng ta có n số a1, a2, a3, ..., an. Ta cần tính giá trị Sn = a1.a2 a2.a3 a3.a4 ... an.a1. Chú ý rằng mỗi số a1, a2, a3, ..., an xuất hiện đúng 2 lần trong Sn. Vì số bằng 1 hoặc -1, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Với n chia hết cho 4, ta có số lẻ các cặp số (ai.ai 1 ai 2.ai 3). Trong mỗi cặp này, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Vì vậy, tổng của mỗi cặp số này sẽ luôn bằng 1. Vậy Sn = 1 + 1 + ... + 1 (n/2 lần) = n/2 = 0 khi và chỉ khi n chia hết cho 4. Trường hợp 2: n không chia hết cho 4 (n = 4k + m, với m = 1, 2, 3) Trong trường hợp này, chúng ta cũng có số lẻ các cặp số (ai.ai 1 ai 2.ai 3). Trong mỗi cặp này, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Tuy nhiên, chúng ta còn có một số cuối cùng là an.a1. Với mỗi số bằng 1 hoặc -1, khi nhân với -1, ta sẽ đổi dấu của số đó. Vì vậy, tổng của mỗi cặp số là 1, nhưng khi cộng thêm số cuối cùng an.a1, tổng sẽ có thể là 1 - 1 = 0 hoặc 1 + 1 = 2. Vậy Sn = 0 hoặc 2, không bao giờ bằng 0 khi n không chia hết cho 4. Từ hai trường hợp trên, ta có thể kết luận rằng Sn = 0 khi và chỉ khi n chia hết cho 4.
Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50
⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150
<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)
⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau
Mình xin lỗi viết nhầm số thành dố
Các bạn nào biết làm thì chỉ hộ mình nhé
Mai 5h sáng mình đã cần rùi
Cảm ơn
help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!
bn có thể lên trang học 24h mà kb với những người từ lp 6 trở lên rồi hỏi bài họ là đc mà!
tk nha!