Tìm số nguyên tố p sao cho p+6, p+8, p+14 đều là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p nguyên tố nên p là số tự nhiên ⇒ p có dạng 3k; 3k + 1; 3k + 2 ( k ϵ N* )
Nếu p = 3k ⇒ p ⋮ 3 mà p nguyên tố nên p = 3
Khi đó p + 6 = 3 + 6 = 9 ⋮ 3 mà 9 > 3 nên 9 là hợp số ( loại )
Nếu p = 3k + 1 ⇒ p + 2 = 3k + 3 = 3( k + 1 ) ⋮ 3 mà 3( k + 1 ) > 3 nên 3k + 1 là hợp số ( loại )
Nếu p = 3k + 2 ⇒ p + 2 = 3k + 4
p + 6 = 3k + 8
p + 8 = 3k + 10
p + 14 = 3k + 16
Vậy p = 3k + 2 thì p + 2; p + 6; p + 8; p + 14 là số nguyên tố
Lời giải:
Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn)
Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.
Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.
Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.
Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.
Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=5$ là đáp án duy nhất.
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Câu hỏi của dương đăng anh - Toán lớp 9 - Học toán với OnlineMath
Tương tự thôi !
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
Đáp số:P=5 .Xét P dưới các dạng 5k,5k+1,5k+2,5k+3,5k+4(k thuộc N)
c) p+6, p+8, p+12, p+14 nguyên tố
p = 5k+r
xét như trên thấy r không thể là 1, 2, 3,4
r = 0 => p = 5k nguyên tố => p = 5
các số là 5, 11,13,17,19 nguyên tố
Vậy p = 5
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
số nguyên tố là 5 thì P+6, P+8, P+14 là số nguyên tố
NHẤN CÂU HỎI TƯƠNG TỰ