K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

số nguyên tố là 5 thì P+6, P+8, P+14 là số nguyên tố


 

8 tháng 1 2018

NHẤN CÂU HỎI TƯƠNG TỰ

11 tháng 11 2015

vi p la so nguyen to

đặt p = có dạng 3k, 3k+1, 3k+2

Thay vào

+>p+10=3k+10

p+14=3k+14(chọn)

+>p+10=3k+1+10=3k+11

p+14=3k+1+14=3k+15=>loại

+>p+10=3k+2+10=3k+12=>loại

Từ các bt trên suy ra snt cần tìm là 3

Các câu sau làm tuong tu

 

12 tháng 1 2023

Vì p nguyên tố nên p là số tự nhiên ⇒ p có dạng 3k; 3k + 1; 3k + 2 ( k ϵ N* )

Nếu p = 3k ⇒ p ⋮ 3 mà p nguyên tố nên p = 3

Khi đó p + 6 = 3 + 6 = 9 ⋮ 3 mà 9 > 3 nên 9 là hợp số ( loại )

Nếu p = 3k + 1 ⇒ p + 2 = 3k + 3 = 3( k + 1 ) ⋮ 3 mà 3( k + 1 ) > 3 nên 3k + 1 là hợp số ( loại )

Nếu p = 3k + 2 ⇒ p + 2 = 3k + 4

p + 6 = 3k + 8

p + 8 = 3k + 10

p + 14 = 3k + 16

Vậy p = 3k + 2 thì p + 2; p + 6; p + 8; p + 14 là số nguyên tố

17 tháng 11 2024

@Lương Thị Vân Anh Sai r ngta có bẩu cmr đâu

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Lời giải:

Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn) 

Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.

Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.

Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.

Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.

Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)

Vậy $p=5$ là đáp án duy nhất.

21 tháng 8 2018

+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm

22 tháng 7 2017

Câu hỏi của dương đăng anh - Toán lớp 9 - Học toán với OnlineMath

Tương tự thôi ! 

1 tháng 8 2015

Đáp số:P=5 .Xét P dưới các dạng  5k,5k+1,5k+2,5k+3,5k+4(k thuộc N)

21 tháng 11 2017

c) p+6, p+8, p+12, p+14 nguyên tố 
p = 5k+r 
xét như trên thấy r không thể là 1, 2, 3,4 
r = 0 => p = 5k nguyên tố => p = 5 
các số là 5, 11,13,17,19 nguyên tố 

Vậy p = 5 

23 tháng 10 2015

Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?

Viết lại 5 số như sau:

p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4

=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.

=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất  và là số nguyên tố).

Khi đó 5 số trong đầu bài là:

5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19

đều là số nguyên tố

29 tháng 12 2016

p=5

p+6    =5+6     =11

p+8    =5+8    =13

p+12  =5+12  =17

p+14  =5+14  =19

chúc bạn học giỏi.

29 tháng 12 2016

p=5

đúng