K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2016

bạn ơi =12345678

tích cho mình nhé!

1 tháng 10 2017

Ta có: 

y02 + ay0 + b = 0

\(\Leftrightarrow\)y04 = (ay0 + b)2

\(\le\)(a2 + b2)(y02 + 1)

\(\Rightarrow\)y04 - 1 < (a2 + b2)(y02 + 1)

\(\Rightarrow\)y02 - 1 < a2 + b2

\(\Rightarrow\)y02 < 1 + a2 + b2

1 tháng 10 2017

3/ Dễ thấy \(0\le x,y,z\le1\)

Ta có:

x2 + y2 + z2 = x3 + y3 + z3

\(\Leftrightarrow\)x2(1 - x) + y2(1 - y) + z2(1 - z) = 0

Dấu =  xảy ra khi (x, y, z) = (0,0,1) và các hoán vị của nó

1 tháng 6 2017

Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V

1 tháng 6 2017

Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)

13 tháng 5 2020

Biến đổi \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(Do x+y=1 => \(\hept{\begin{cases}y-1=-x\\x-1=-y\end{cases}}\))

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^3+y^3-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

2 tháng 3 2018

1/ Theo đề bài thì \(x+y=1\)

\(\Rightarrow x,y< 1\)

Ta chứng minh

\(\frac{\left(1-y\right)}{1-\left(1-y\right)^2}+\frac{y}{1-y^2}-\frac{4}{3}\ge0\)

\(\Leftrightarrow4y^4-8y^3-7y^3+11y-3\le0\)

\(\Leftrightarrow\left(2y-1\right)^2\left(y^2-y-3\right)\le0\) đúng