K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

sao chứng minh được \(\Delta ABC\)cân tại \(A\) khi đề bài cho \(AB=20\)và \(AC=48\)

\(\Delta\)cân là 2 cạnh bên của nó phải bằng nhau 

đọc đề mình đã thấy nó không hợp lí rồi Nguyễn Hải Văn 

6 tháng 1 2018

mk xin lỗi nhé

Cm Tam giác ABC vuông tại A 

gúp mk vs

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)

12 tháng 2 2022
12 tháng 2 2016

a) tam giác ABC có BC^2=52^2=2704

mà AB^2+AC^2=20^2+48^2=2704

=> BC^2=AB^2+AC^2

=> tam giác ABC vuông tại A

b) tam giác ABC vuông tại A=> AH.BC=AB.AC

=> AH.52=20.48

=> AH.52=960

=> AH=240/13cm

20 tháng 1 2022

a, Ta có : 4AB = 3CA => AB /3 = AC /4 => AB^2/9 = AC^2/16

Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{400}{25}=16\Rightarrow AB=12cm;AC=16cm\)

b, Ta có : BH + CH = BC = 25 cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=15cm\)

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-HB^2}=12cm\)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: BH=CH=12/2=6cm

=>AC=căn AH^2+HC^2=10cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

27 tháng 3 2022
 

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Chứng minh

a) Xét tam giác AHB và tam giác AHC có:

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

27 tháng 3 2022

b) có tam giác ABC cân tại A

=> AB=AC

có BC=BH+HC

=> BC=12:2=6(cm)

=> BH=6;HC=6

có tam giác AHC

=> áp dụng định lí pytago có 

=>AH2+HC2=AC2

=>82+62=AC2

=>AC2=102

=>AC=10

Đề có sai ko??? Vẽ hình nó ko có cắt!!

4 tháng 3 2017

Thấy cái bài này xài hệ thức lượng lớp 9..

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)