K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

giúp mình vs, mình đg cần gấp lắm

17 tháng 2 2022

lại là mày thằng này mày chửi ít thôi 

a) Sửa đề: Chứng minh ΔADB=ΔADC

Xét ΔADB và ΔADC có 

AD chung

DB=DC(D là trung điểm của BC)

AB=AC(ΔABC cân tại A)

Do đó: ΔADB=ΔADC(c-c-c)

6 tháng 2 2022

AB = AC => Tam giác ABC cân tại A

a. Xét tam giác AMB và tam giác AMC

AB = AC ( gt )

Góc B = góc C ( ABC cân )

BM = CM  ( gt )

Vậy...... ( c.g.c)

=> góc BAM = góc CAM ( 2 góc tương ứng )

=> AM là phân giác góc A

b. trong tam giác cân ABC đường phân giác cũng là đường cao

=> AM vuông BC

c.tam giác MEF là tam giác cân vì:

xét tam giác vuông BME và tam giác vuông CMF 

Góc B = góc C

MB = MC ( gt )

Vậy....( cạnh huyền. góc nhọn )

=> ME = MF ( 2 cạnh tương ứng )

Chúc bạn học tốt !!!

 

 

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: ME=MF

hay ΔMEF cân tại M

13 tháng 1 2023

hình thì bạn tự vẽ nha !

a) xét ΔAMB và ΔAMC, ta có : 

AB = AC (gt)

MB = MC (vì M là trung điểm của cạnh BC)

AM là cạnh chung

⇒ ΔAMB = ΔAMC (c.c.c)

b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

⇒ AM vuông góc với BC

c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

xét ΔAHM và ΔAKM, ta có : 

AM là cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (cmt)

⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)

⇒ HA = KA (2 cạnh tương ứng)

HB không thể nào bằng AC được nha, có thể đề sai 

d) vì HA = KA nên ⇒ ΔHAK là tam giác cân

trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\)   (1)

trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\)    (2)

từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC

16 tháng 1 2023

A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X

Chứng minh:

a) Xét hai ∆AMB và ∆AMC có:

       AB = AC (GT)

       MB = MB (M là trung điểm của BC)

       AM là cạnh chung

Vậy ∆AMB = ∆AMC(c.c.c)

b) Có ∆AMB = ∆AMC(theo a)

⇒ Góc AMB = Góc AMC(2 góc tương ứng)

mà góc AMB + AMC = 180° (2 góc kề bù)

⇒ Góc AMB = Góc AMC = 90°

⇒ AM ∟ BC

c) ΔABC có:

       AB = AC(GT)

⇒ ΔABC cân tại A

⇒ Góc B = Góc C

Có MHAB tại H ⇒ Góc MHB = 90°

Có MKAC tại K ⇒ Góc MKC = 90°

Xét hai ΔBHM và ΔCKM có:

       Góc B = Góc C(ΔABC cân tại A)

       MB = MC(M là trung điểm của BC)

       Góc MHB = Góc MKC = 90°

Vậy ΔBHM = ΔCKM(g.c.g)

⇒ HB = KC(2 cạnh tương ứng)

Có HB + HA = AB

⇒ HA = AB - HB

Có KC + KA = AC

⇒ KA = AC - KC

mà AB = AC(GT)

       HB = KC(2 cạnh tương ứng)

⇒ HA = KA (2 cạnh tương ứng)

 

14 tháng 2 2022

giúp mình vs ạ! MÌnh đg cần gấp lắm !

14 tháng 2 2022

TK:

a) Xét ΔAMB và ΔAMC có:

AB=AC(gt)

ˆBAM=ˆCAM(AM là tia phân giác góc A)

AM chung

=> ΔAMB=ΔAMC(c.g.c)

b) Ta có: ΔAMB=ΔAMC(cmt)

=> ˆAMB=ˆAMC

Mà 2 góc này là 2 góc kề bù

⇒ˆAMB=ˆAMC=900

=> AM⊥BC

c)  Ta có: ΔAMB=ΔAMC(cmt)

=> BM=MC( 2 cạnh tương ứng)

=> M là trung điểm BC 

26 tháng 8 2021

a) Xét ΔAMB và ΔAMC có:

AB=AC(gt)

\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác góc A)

AM chung

=> ΔAMB=ΔAMC(c.g.c)

b) Ta có: ΔAMB=ΔAMC(cmt)

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà 2 góc này là 2 góc kề bù

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM⊥BC

c)  Ta có: ΔAMB=ΔAMC(cmt)

=> BM=MC( 2 cạnh tương ứng)

=> M là trung điểm BC

26 tháng 8 2021

cảm ơn bạn