1) Xác định hệ phương trình
2x+ay=b+4
ax+by=8+9a
2) Một cano dự định đi từ A đến B trong thời gian dự định. Nếu cano tăng 3km/h thì đến sớm hơn 2 giò, nếu giảm 3km/h thì đến chậm hơn 3 giờ. Tính chiều dài sông AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định là a km/giờ (a thuộc N*)
Gọi thời gian dự định là b giờ (b thuộc N)
Khoảng cách giũa A và B là : ab
Ta có : ab= (a+3)(b-2) ; ab=(a-3)(b+3)
ab=a(b-2)+3(b-2) : ab=a(b+3)-3(b+3)
ab=ab-2a+3b-6 : ab=ab+3a-3b-9
0=3b-(2a+6) : 0=3a-3b-9
=>3b=2a+6 ; hay3a-(2a+6)-9 =0
3a-2a-6-9=0
a-15=0
=>a=15 và b=(2.15+6):3=36:3=12
Vậy vận tốc đã định là 15 km/giờ
thời gian đã định là 12 giờ
áp án: V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
V=28 km/h( t/g dự định)
X=6 giờ( t/g dự định)
Giải thích các bước giải:Gọi giờ dự định là x, vận tốc dự định là v.
Vậy ta có quãng đường là v*x (km)
Ta có hệ hai phương trình:
(v+14) * (x-2) = v*x
(v-4) * (x+1) =v *x
Giải hệ phương trình này, ta có được
v = 28 km/h (vận tốc dự định)
x = 6 giờ (thời gian dự định)
40 phút = \(\dfrac{2}{3}h.\)
Gọi vận tốc xe dự định đi từ A đến B là x \(\left(km/h\right)\left(x>10\right).\)
thời gian theo dự định là y \(\left(h\right)\left(y>\dfrac{2}{3}\right).\)
\(\Rightarrow\) Quãng đường xe đi được là \(xy\left(km\right).\)
Nếu xe giảm vận tốc đi 10km/h thì xe đến B chậm hơn dự định 1 giờ, nên ta có phương trình:
\(\left(x-10\right)\left(y+1\right)=xy.\left(1\right)\)
Nếu xe tăng vận tốc thêm 10 km/h thì xe đến B sớm hơn dự định 40 phút, nên ta có phương trình:
\(\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\left(2\right)\)
Từ (1) và (2), ta có hpt:
\(\left\{{}\begin{matrix}\left(x-10\right)\left(y+1\right)=xy.\\\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-10y-10=xy.\\xy-\dfrac{2}{3}x+10y-\dfrac{20}{3}=xy.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-10y=10.\\-\dfrac{2}{3}x+10y=\dfrac{20}{3}.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=50.\\y=4.\end{matrix}\right.\left(TM\right)\)
Vậy vận tốc xe dự định đi từ A đến B là 50 km/h.
Gọi vận tốc và thời gian dự định đi từ A đến B lần lượt là v(km/h) và t(h)
(ĐK:v>10,t>\(\dfrac{2}{3}\))
Ta có quãng đường AB dài:vt(km)(1)
_Nếu xe giảm vận tốc đi 10 km thì:
+Vận tốc của xe là:v-10(km/h)
+Thời gian xe đi từ A đến B là:t+1(h)
\(\Rightarrow\)Quãng đường AB dài:(v-10)(t+1)=vt-10t+v-10(km)(2)
_Nếu xe tăng vận tốc thêm 10 km thì:
+Vận tốc của xe là:v+10(km/h)
+Thời gian xe đi từ A đến B là:t-\(\dfrac{2}{3}\)(h)
\(\Rightarrow\)Quãng đường AB dài:(v+10)(t-\(\dfrac{2}{3}\))=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)(km)(3)
Từ (1,2,3) ta có vt-10t+v-10=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)=vt
\(\Leftrightarrow\)\(\begin{cases} v-10t=10 \\ 10t-\dfrac{2}{3}v=\dfrac{20}{3} \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} v=50 \\ t=4 \end{cases}\)(t/m)
Vậy.........................................................................................
Gọi vận tốc của ô tô là x , thời gian dự định là y ( x(km/h), y(giờ) ; x, y > 0 )
S ban đầu = xy
Tăng vận tốc thêm 10km/h thì đến sớm hơn dự định 2 giờ
=> S = ( x + 10 )( y - 2 )
Giảm vận tộc đi 10km/h thì đến chậm hơn dự định 3 giờ
=> S = ( x - 10 )( y + 3 )
Vì quãng đường AB không đổi
=> Từ ( 1 ) và ( 2 ) ta có phương trình :
\(\hept{\begin{cases}\left(x+10\right)\left(y-2\right)=xy\\\left(x-10\right)\left(y+3\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+10y-xy-20=0\\xy+3x-10y-xy-30=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2x+10y-20=0\left(3\right)\\3x-10y-30=0\left(4\right)\end{cases}}\)
Lấy ( 3 ) cộng ( 4 ) theo vế
\(\Rightarrow x-50=0\Leftrightarrow x=50\)
Thế x = 50 vào ( 3 )
\(\Rightarrow-2\cdot50+10y-20=0\)
\(\Rightarrow-120+10y=0\)
\(\Rightarrow10y=1200\Leftrightarrow y=12\)
Cả hai giá trị đều thỏa mãn điều kiện
=> ( x ; y ) = ( 50 ; 12 )
Vậy vận tốc ban đầu của ô tô = 50km/h và thời gian dự định = 12 giờ
=> Quãng đường AB dài : 50 . 12 = 600km
Trả lời:
Gọi vân tốc dự định của ô tô là:\(x\)\(\left(km/h,x>10\right)\)
thời gian dự định ô tô đi quãng đường AB là \(y\) \(\left(giờ,y>2\right)\)
Độ dài quãng đường AB là \(xy\left(km\right)\)
.Nếu tăng vận tốc thêm 10km/h thì đến B sớm hơn dự định 2 giờ
\(\Rightarrow\left(x+10\right).\left(y-2\right)=xy\)
\(\Leftrightarrow xy-2x+10y-20=xy\)
\(\Leftrightarrow-2x+10y=20\)(1)
Nếu giảm vận tốc 10km/h thì đến B chậm hơn dự định 3 giờ
\(\Rightarrow\left(x-10\right).\left(y+3\right)=xy\)
\(\Leftrightarrow xy+3x-10y-30=xy\)
\(\Leftrightarrow3x-10y=30\)(2)
Từ (1) (2) ta có: \(\hept{\begin{cases}-2x+10y=20\\3x-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\3.50-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\150-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\10y=120\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\y=12\left(TM\right)\end{cases}}\)
Vậy quãng đường AB dài: \(50\times12=600\left(km\right)\)