K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)

12 tháng 2 2022
12 tháng 2 2016

a) tam giác ABC có BC^2=52^2=2704

mà AB^2+AC^2=20^2+48^2=2704

=> BC^2=AB^2+AC^2

=> tam giác ABC vuông tại A

b) tam giác ABC vuông tại A=> AH.BC=AB.AC

=> AH.52=20.48

=> AH.52=960

=> AH=240/13cm

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

\(\Rightarrow AB.AC=BC.AH\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)

\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

Đề có sai ko??? Vẽ hình nó ko có cắt!!

3 tháng 8 2023

Vẽ hình luôn nha, huhu cứu mình với

 

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên \(\widehat{B}\simeq53^0\)

=>góc C=90-53=37 độ

AH=AB*AC/BC=12*16/20=192/20=9,6cm

d: Xét ΔABC vuông tại A có 

tan B=AC/AB=4/3

sin B=AC/BC=4/5

mà 4/3>4/5

nên tan B>sin B

19 tháng 2 2020

Bài 1:

Xét tam giác vuông ABD tại D. Theo định lý Pi-ta-go, ta có:

BD2+AD2=AB2

=>225+AD2=289(cm)

=>AD2=64(cm)

=>AD=8(cm)

Suy ra CD=AC-AD=17-8=9(cm)

Lại xét tam giác BCD vuông tại D. Theo định lý Pi-ta-go ta có:

BD2+CD2=BC2

=>225+81=BC2(cm)

=>BC2=306(cm)

=>BC=\(\sqrt{306}\left(cm\right)\)

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên \(\widehat{B}\simeq53^0\)

=>\(\widehat{C}\simeq37^0\)

AH=AB*AC/BC=12*16/20=192/20=9,6cm

d: Xét ΔABC vuông tại A có 

tan B=AC/AB=4/3

sin B=AC/BC=4/5

mà 4/3>4/5

nên tan B>sin B

d: tan B=AC/AB

sin B=AC/BC

AB<BC(ΔABC vuôngtại A)

=>AC/AB>AC/BC

=>tanB>sin B

b: Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16

=>AH=9,6cm

Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên góc B=53 độ

=>góc C=37 độ