Tìm x thuộc Z
a ) ( x - 1 ) . ( x + 2 ) > 0
b ) ( - x + 1 ) . ( x - 5 ) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{-5}>0\)
\(\Rightarrow-5x>0\)
\(\Rightarrow5x< 0\)
\(\Rightarrow x< 0\)
\(\Rightarrow x\in(-1,-2,-3,...)\)
b) \(\frac{2x}{5}=0\)
\(\Rightarrow2x=0\)
\(\Rightarrow x=0\)
c) \(0< \frac{x}{1}< 1\)
\(\Rightarrow0< x< 1\) mà x\(\in z\)
\(\Rightarrow x\in\varnothing\)
d) \(\frac{3x}{6}=1\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
e) \(2< \frac{x}{3}< 4\)
\(\Rightarrow\)\(6< x< 12\)
\(x\in(7,8,9,10,11,12)\)
a) \(x\left(x-3\right)>0\)
\(\Leftrightarrow x\) và \(x-3\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Rightarrow x>3\)
\(TH:\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
b) \(x\left(x+2\right)>0\)
\(\Leftrightarrow x\) và \(x+2\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x+2>0\end{cases}}\Rightarrow x>0\)
\(TH:\hept{\begin{cases}x< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -2\)
c) \(\left(x+5\right)2x>0\)
\(\Leftrightarrow2x^2+10x>0\)
\(\Leftrightarrow x\inℕ^∗\)
d) \(x\left(x+3\right)< 0\)
\(\Leftrightarrow x\) và \(x+3\) trái dấu
Mà x < x + 3 nên \(\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow-3< x< 0\)
Vậy \(x\in\left\{-2;-1\right\}\)
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
a) ( x - 1 ) ( 5 - x ) = 0
TH1. x - 1 = 0 TH2. 5 - x = 0
x = 0 + 1 x = 5 - 0
x = 1 x = 5
Vậy x = 1 hoặc x = 5.
a) Ta có : (x2 + 1).(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(\text{loại}\right)\\x=-3\end{cases}}\)
Ta có vì (x+2)(x-1)<0
suy ra có một số dương và một số dương
mà (x+2)>(x-1)
suy ra x+2 >0
x-1<0
x+2>0 suy ra x>0-2 suy ra x>-2
x-1<0 suy ra x>0+1 suy ra x<1
-2<x<1
x={-1;0}
a/ \(\left(x-1\right)\left(x+2\right)>0\)
\(\Leftrightarrow\) Ta có 2 trường hợp :
TH1 :
\(\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\)
Th2 :
\(\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\)