cho tam giác ABC có AB=AC , từ A kẻ AH vuông góc BC (H thuộc BC).
a, vẽ hình ghi giả thiết, kết luận.
b, CMR: tam giác AHB = tam giác AHC
c, CMR: AH vuông góc với BC
d, Trên tia đối của tia AH lấy điểm E.CMR : BE = EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho diện tích hình thang là 124,7 m vuông đáy lón là 15, đái bé là 14m, tính chiều cao
GT | △ABC cân tại A. AB = AC = 13cm. BC = 24cm. AH ⊥ BC (H BC). BK = CI. BM ⊥ AK. CN ⊥ AI |
KL | a, △AHC = △AHB b, AH = ? c, △ABK = △ACI d, △MBK = △NCI |
Bài giải:
a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △AHC vuông tại H và △AHB vuông tại H
Có: AH là cạnh hcung
AC = AB (cmt)
=> △AHC = △AHB (ch-cgv)
b, Ta có: BC = BH + HC
Mà BC = 24 cm
=> BH + HC = 24 cm
Mà HC = HB (△AHC = △AHB)
=> HC = HB = 24 : 2 = 12 (cm)
Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 + 122 = 132 => AH2 = 25 => AH = 5
c, Ta có: ABK + ABC = 180o (2 góc kề bù)
ACI + ACB = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABK = ACI
Xét △ABK và △ACI
Có: AB = AC (cmt)
ABK = ACI (cmt)
BK = CI (gt)
=> △ABK = △ACI (c.g.c)
d, Xét △MBK vuông tại M và △NCI vuông tại N
Có: BK = CI (gt)
MKB = NIC (△ABK = △ACI)
=> △MBK = △NCI (ch-gn)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a)Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H có :
\(AB=AC\)
\(\widehat{ABC}=\widehat{ACB}\)
=> \(\Delta AHB\)=\(\Delta AHC\) (ch-gn)
b) Xét \(\Delta AMH\) và \(\Delta CME\) có :
\(AM=MC\)
\(\widehat{AMH}=\widehat{CME}\)
\(ME=MH\)
=> \(\Delta AMH\)=\(\Delta CME\) (c-g-c)
=> AH=CE
c)Có : \(\widehat{HAM}=\widehat{MCE}\)
mà \(\widehat{HAM}và\widehat{MCE}\) ở vị trí so le
=> AH//CE
=> \(\widehat{AHB}=\widehat{HCE}=90^o\)
Xét \(\Delta AHC\) và \(\Delta ECH\) có :
CH chung
\(\widehat{AHB}=\widehat{HCE}=90^o\)
AH=CE
=> \(\Delta AHC\)=\(\Delta ECH\) (c-g-c)
=>\(\widehat{HCA}=\widehat{EHC}\)
mà \(\widehat{HCA}=\widehat{HBA}\)
=> \(\widehat{HBA}=\widehat{EHC}\)
Mà \(\widehat{HBA}và\widehat{EHC}\) ở vị trí đồng vị
=> HM//AB
Tự làm