Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=3\)
CMR: \(\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}+\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}+\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le3\)
Các bạn giải hộ tớ bài này nhé! Cảm ơn rất nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt biểu thức đã cho là \(A\)
Ta có:
\(6a^2+8ab+11b^2=2a^2+(2a+2b)^2+7b^2\)
Áp dụng BĐT Bunhiacopxky:
\([2a^2+(2a+2b)^2+7b^2](2+4^2+7)\geq (2a+8a+8b+7b)^2\)
\(\Leftrightarrow 25(6a^2+8ab+11b^2)\geq (10a+15b)^2\)
\(\Rightarrow \sqrt{6a^2+8ab+11b^2}\geq 2a+3b\)
\(\Rightarrow \frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\leq \frac{a^2+3ab+b^2}{2a+3b}\)
Thực hiện tương tự với các biểu thức còn lại và cộng theo vế:
\(A\leq \frac{a^2+3ab+b^2}{2a+3b}+\frac{a^2+3ac+c^2}{2c+3a}+\frac{b^2+3bc+c^2}{2b+3c}\)
\(6A\leq \frac{3a(2a+3b)+2b(2a+3b)+5ab}{2a+3b}+\frac{3c(2c+3a)+2a(2c+3a)+5ac}{2c+3a}+\frac{3b(2b+3c)+2c(2b+3c)+5bc}{2b+3c}\)
\(\Leftrightarrow 6A\leq 3a+2b+\frac{5ab}{2a+3b}+3c+2a+\frac{5ac}{2c+3a}+3b+2c+\frac{5bc}{2b+3c}\)
\(\Leftrightarrow 6A\leq 5(a+b+c)+5\left(\frac{ab}{2a+3b}+\frac{bc}{2b+3c}+\frac{ac}{2c+3a}\right)\)
Theo hệ quả của BĐT AM-GM:
\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3(1)\)
Áp dụng BĐT Cauchy-Schwarz dạng ngược:
\(\frac{ab}{2a+3b}\leq \frac{ab}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}\right)\)
\(\frac{bc}{2b+3c}\leq \frac{bc}{25}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{ca}{2c+3a}\leq \frac{ca}{25}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}\right)\)
\(\Rightarrow \frac{ab}{2a+3b}+\frac{bc}{2b+3c}+\frac{ac}{2c+3a}\leq \frac{1}{5}(a+b+c)(2)\)
Từ (1); (2) suy ra:
\(6A\leq 5(a+b+c)+5.\frac{1}{5}(a+b+c)=6(a+b+c)\leq 18\)
\(\Rightarrow A\leq 3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Để ý theo bất đẳng thức Bunhiacopxki ta có:
\(\left(a+b+c\right)^2\) sẽ nhỏ hơn hoặc bằng với:
\(\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\)
Mặt khác cũng theo bất đẳng thức Bunhiacopxki ta được:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\)
\(=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)sẽ nhỏ hơn hoặc bằng với:
\(\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3\right)+24abc}\)
Ta chứng minh được \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)nên ta được:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c\right)^2\le\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a+b+c\right)^2\)
Hay \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Vậy bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)
Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)
\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)
\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)
\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)
\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
Tương tự ta cũng chứng minh đc:
\(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)
\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)
=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)
\(=\sqrt{5}\left(a+b+c\right)\)
Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)
Đặt \(P=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+abc}}\)
\(=\frac{a^2}{a\sqrt{a^2+8bc}}+\frac{b^2}{b\sqrt{b^2+8ca}}+\frac{c^2}{c\sqrt{c^2+abc}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)}\)(Theo bất đẳng thức Bunhiacopxki dạng phân thức)
Ta có:
Suy ra
Ta cần chứng minh \(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)
\(\Leftrightarrow a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\ge6abc\)
Đúng vì \(a^2b+b^2c+c^2a\ge3\sqrt[3]{a^3b^3c^3}=3abc\); \(ab^2+bc^2+ca^2\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Từ đó suy ra \(\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\le\left(a+b+c\right)^2\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)}\ge1\)
Vậy \(=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+abc}}\ge1\)
Đẳng thức xảy ra khi a = b = c
Đặt VT là K.
Ta có: \(6a^2+8ab+11b^2=\left(2a+3b\right)^2+2\left(a-b\right)^2\ge\left(2a+3b\right)^2\)
\(\Rightarrow\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\le\frac{a^2+3ab+b^2}{2a+3b}\)
Tiếp tục ta chứng minh: \(\frac{a^2+3ab+b^2}{2a+3b}\le\frac{3a+2b}{5}\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Tương tự ta có: \(\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}\le\frac{3b+2c}{5}\);\(\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le\frac{3c+2a}{5}\)
Cộng từng vế của các bđt trên, ta được:
\(M\le\frac{3b+2c}{5}+\frac{3a+3b}{5}+\frac{3c+2a}{5}=a+b+c\)
Lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\le a^2+b^2+c^2+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
hay \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow a+b+c\le3\)
Vậy \(M\le3\)
Đẳng thức xảy ra khi a = b = c = 1
VT là M nha, mà k hay M gì cx đc, cm đc ròi