S= 1 + 2 + 22 + 23 + 24 + 25 + 26+ 27
Chứng tỏ S chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))
Chúc bạn an toàn
s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]
s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]
s=[1+2] nhân[1+2+...+2 mũ 6
s=3 nhân [1+2+...+2 mũ 6]
=> s chia hết cho 3
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)
S= 3+45+51+51
S=3+3.15+3.17+3.17
S=3.(1+15+17.2): hết 3
tick nha nhanh nhất nè
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = (1+2)+(22+23)+(24+25)+(26+27)
S = 3 + 22(1+2)+24(1+2)+26(1+2)
S = 3 + 22.3 + 24.3 + 26.3
S = 3(22+24+26+1)
=> S chia hết 3
k tui nha. Tui là ARMY nè. Bias của tui là Chây Hốp
S= 1 + 2 + 22 + 23 + 24 + 25 + 26+ 27
Chứng tỏ S chia hết cho 3
S = 3 + 22(2+1) +...+26(2+1)
S = (3 + 22.3+...+26.3) chia hết cho 3
=> S chia hết cho 3