chứng minh A=3+3^2+3^3+3^4+.......+3^99+3^100
chứng minh Achia hết cho 15
MÌNH CẦN GẤP NÊN GIẢI NHANH NHÉ(7H40-8HOO)
THANK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
a) A = 4 + 4² + 4³ + ... + 4¹²
= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4
Vậy A ⋮ 4
b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)
= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)
= 4.5 + 4³.5 + ... + 4¹¹.5
= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5
Vậy A ⋮ 5
c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4¹⁰.21
= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21
Vậy A ⋮ 21
Bài 1:Ta có:315+314=314.3+314=314.4 chia hết cho 4
Bài 2:a,\(3A=3+3^2+3^3+...........+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+.......+3^{2016}\right)-\left(1+3+.......+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\Rightarrow A=\frac{3^{2016}-1}{2}\)
b,Ta có:A=1+3+32+33+.............+32015
=(1+3)+(32+33)+...............+(32014+32015)
=4+32.4+................+32014.4
=4.(1+32+.........+32014) chia hết cho 4
Giải
A=(1+3^1)+(3^2+3^3)+...+(3^98+3^99)
A=4.1+3^2.(1+3^1)+...3^98.(1+3^1)
A=4.1+3^2.4+...3^98.4
A=4.(1+3^2+3^4+...+3^98)
=> A chia hết cho 4
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
A = 3 + 32 + 33 + 34 + .... + 399 + 3100
= (3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ..... + (397 + 398 + 399 + 3100)
= 3(1 + 3 + 32 + 33) + 35(1 + 3 + 32 + 33) + .... + 397(1 + 3 + 32 + 33)
= 40(3 + 35 + .... + 397) \(⋮5\)
Ta thấy A \(⋮3\)(vì các số hạng của A đều chia hết cho 3)
mà (3; 5) = 1
nên A \(⋮15\)
Ta có : A =3+3^2+3^3+3^4+.............+3^99+3^100
= (3+3^2+3^3+3^4)+................+(3^97+3^98+3^99+3^100)
= 3.(1+2+3+3^2)+ ...............+3^97.(1+2+3+3^2)
=3.15+.........................+3^97.15
=15.(3+...............+3^97) chia hết cho 15