K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

vì n là số lẻ nên ta đặt n = 2a+1 (với a E N)

n3-n = (2a+1)3-(2a+1) = 8a3+12a2+ 6a+1-2a-1 = 8a3+12a2+4a = 2a (4a2+6a +2) = 4a(a+1)(2a+1) = 2a.(2a+1).(2a+2)

Vì n3-n = 4a(a+1)(2a+1) chia hết cho 4.   

 +) Nếu a chẵn thì a chia hết cho 2 => n3-n = 4a(a+1)(2a+1)  chia hết cho 2.4 =  8

+) Nếu a lẻ thì a+1 chẵn chia hết cho 2 => n3-n = 4a(a+1)(2a+1)  chia hết cho 2.4 =  8

Vậy n3-n = 4a(a+1)(2a+1) chia hết cho 8   

mặt khác n3-n  = 2a.(2a+1).(2a+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3

Vậy n3-n  chia hết cho 3.8 = 24 (vì 3 và 8 là 2 số nguyên tố cùng nhau )

Lưu ý: nếu A chia hết cho 2, chia hết cho 4 , chia hết cho 3 mà kết luận A chia hết cho 2.3.4 = 24 là sai vì 2, 4 không phải là 2 số nguyên tố cùng nhau. ví dụ 12 chia hết cho 2; 3; 4 nhưng không chia hết cho 24 nhé)

                                                  

22 tháng 12 2017

n3 - n = n ( n - 1 ) ( n + 1 )

n ( n - 1 ) là tích của 2 số tự nhiên liên tiếp chia hết cho 2 

Vì n lẻ => n - 1 ; n + 1 là tích số chẵn chia hết cho 4

=> n ( n - 1 ) ( n + 1 ) chia hết cho 4

3 số tự nhiên liên tiếp có 1 số chia hết cho 3 

=> n ( n - 1 ) ( n + 1 ) chia hết cho 3 

=> n ( n - 1 ) ( n + 1 ) chia hết cho 2 . 3 . 4 = 24 

=> n3 - n chia hết cho 24 ( đpcm ) .

29 tháng 3 2018

\(n^3-3n^2-n+3\)

\(=n^2\left(n-3\right)-\left(n-3\right)\)

\(=\left(n-3\right)\left(n^2-1\right)\)

\(=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)

Với n lẻ =>(n-3)(n-1)(n+1) là tích 3 số chẵn liên tiếp

\(\Rightarrow\left(n-3\right)\left(n-1\right)\left(n+1\right)⋮24\)

\(\Rightarrowđpcm\)

16 tháng 6 2015

n3-n=n(n-1)(n+1)

n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4  =>n(n-1)(n+1) chia hết cho 4

Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3

=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)
 

12 tháng 8 2020

Câu 2

Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2

Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1

                                          =4(K^2+K+H^2+H)+2

Vì 4(K^2+K+H^2+H) chia hết cho 4

=>4(K^2+K+H^2+H)+2 ko chia hết cho 4

Mk biết làm vậy thôi nha

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

24^n+1=(24+1)*A=25*A chia hết cho 25

29 tháng 10 2015

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

26 tháng 2 2022

Ta có: n5−n=n(n4−1)=n(n−1)(n+1)(n2+1)

CM n5−n⋮3

Ta thấy n,n+1,n−1 là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho 3

⇒n(n−1)(n+1)⋮3⇔n5−n⋮3(1)

CM n5−n⋮5

+) n≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡1(mod5)⇒n−1≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡2(mod5)⇒n2≡4(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡3(mod5)⇒n2≡9(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡4(mod5)⇒n+1≡0(mod5)

⇒n5−n=n(n+1)(n−1)(n2+1)⋮5

Do đó, n5−n⋮5(2)

CM n5−n⋮16

Vì n lẻ nên đặt n=4k+1;4k+3 Khi đó:[n2=16k2+1+8kn2=16k2+9+24k⇒ n2≡1(mod8)

⇒n2−1⋮8

Mà n lẻ nên n2+1⋮2

Do đó n5−n=n(n2−1)(n2+1)⋮16(3)

Từ (1),(2),(3)⇒n5−n⋮(16.3.5=240) (đpcm)

Chúc bạn học tốt!

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với