K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

\(n^3-3n^2-n+3\)

\(=n^2\left(n-3\right)-\left(n-3\right)\)

\(=\left(n-3\right)\left(n^2-1\right)\)

\(=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)

Với n lẻ =>(n-3)(n-1)(n+1) là tích 3 số chẵn liên tiếp

\(\Rightarrow\left(n-3\right)\left(n-1\right)\left(n+1\right)⋮24\)

\(\Rightarrowđpcm\)

5 tháng 8 2017

Ta có : \(n^3-3n^2-n+3=n^2.\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n^2-1\right)=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)Vì n là số nguyên lẻ nên n có dạng 2k +1 ( n \(\in N\)*)

Thay n = 2k + 1 vào ta có :

\(\left(2k+1-3\right)\left(2k+1+1\right)\left(2k+1-1\right)=\left(2k-2\right)\left(2k+2\right)2k=2\left(k-1\right).2\left(k+1\right).2k=8.k.\left(k-1\right).\left(k+1\right)⋮8\)

\(\left(k-1\right).k.\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(k-1\right).k.\left(k+1\right)⋮2\)

\(\left(k-1\right).k.\left(k+1\right)⋮3\)

=> \(\left(k-1\right).k.\left(k+1\right)⋮6\)

=> \(8.\left(k-1\right).k.\left(k+1\right)⋮48\)

14 tháng 6 2017

\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)

b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).

14 tháng 6 2017

Câu hỏi của CoRoI - Toán lớp 8 - Học toán với OnlineMath

13 tháng 10 2016

A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1) 
vì n lẻ nên: 
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8 
(n - 3) là số chẵn chia hết cho 2 
=> A chia hết cho 16(*) 
mặt khác: 
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1) 
xét các trường hợp: 
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3 
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3 
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3 
=> A chia hết cho 3 (**) 
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau). 
 

29 tháng 3 2018

Việt Anh làm sai rồi,

"(n-1)(n+1) là tích 2 số liên tiếp chia hết cho 8

n-3 là số chẵn chia hết cho 2

=> A chia hết cho 16" ?

Xem lại bạn nhé, 2 và 8 không phải là hai số nguyên tố cùng nhau.

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

2 tháng 8 2018

a, Khai trển phương trình : 

(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4 
= 25n^2 + 20n = 5n(5n + 4) 

--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5. 

lưu ý : (a+b)^2 = a^2 + 2ab + b^2

16 tháng 6 2015

n3-n=n(n-1)(n+1)

n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4  =>n(n-1)(n+1) chia hết cho 4

Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3

=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)