Giải hệ phương trình: \(\hept{\begin{cases}\frac{2}{x}+\frac{1}{y}=2\\\frac{6}{x}-\frac{2}{y}=1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)
\(\Rightarrow25+4x^2y^2-16xy=7+xy\)
\(\Leftrightarrow4x^2y^2-17xy+18=0\)
\(\Leftrightarrow xy=\frac{9}{4}\) hoặc \(xy=2\)
Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y
b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath
Ta có HPT : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{4}{x}+\frac{6}{y}=\frac{2}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{4}{x}+\frac{4}{y}=\frac{1}{3}\left(1\right)\\\frac{4}{x}+\frac{6}{y}=\frac{2}{5}\left(2\right)\end{cases}}\)
Lấy (2) trừ (1) , ta được:
\(\frac{4}{x}+\frac{6}{y}-\frac{4}{x}-\frac{4}{y}=\frac{2}{5}-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{y}=\frac{1}{15}\)
\(\Leftrightarrow y=30\)
Thay y = 30 vào (1), ta được:
\(\frac{1}{x}+\frac{1}{30}=\frac{1}{12}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{20}\)
\(\Leftrightarrow x=20\)
Vậy \(\left(x;y\right)\in\left\{\left(20;30\right)\right\}\)
Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)
Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
Ta co:
\(\frac{x}{3}+\frac{y}{2}=\frac{1}{6}\)\(\Rightarrow\frac{2x}{6}+\frac{3y}{6}=\frac{1}{6}\)\(\Rightarrow2x+3y=1\Rightarrow x=\frac{1-3y}{2}\)
\(\Rightarrow\frac{3.\frac{1-3y}{2}}{4}-\frac{\frac{1-3y}{2}}{6}=2\)
\(\Rightarrow\frac{1-3y}{2}.\frac{3}{4}-\frac{1-3y}{2}.\frac{1}{6}=2\)
\(\Rightarrow\frac{1-3y}{2}.\left(\frac{3}{4}-\frac{1}{6}\right)=2\)
\(\Rightarrow\frac{1-3y}{2}.\frac{7}{12}=2\)
\(\Rightarrow\frac{1-3y}{2}=\frac{24}{7}\)
\(\Rightarrow7\left(1-3y\right)=2.24\)
\(\Rightarrow7-21y=48\)
\(\Rightarrow21y=-41\)
\(\Rightarrow y\approx-1,9\)
\(\Rightarrow x=\frac{1-3.\left(-1,9\right)}{2}=3.35\)
a. \(=>\hept{\begin{cases}3xy=\frac{y^2+2}{x}\\3xy=\frac{x^2+2}{y}\end{cases}=>\frac{y^2+2}{x}=\frac{x^2+2}{y}}\\ \)
=> \(y^3+2y=x^3+2x=>x^3-y^3+2x-2y=0\\ \)
=>\(\left(x-y\right)\left(x^2+y^2+xy+2\right)=0\\ \)
\(x^2+y^2+xy\ge0=>x^2+y^2+xy+2>0\)
=> x-y=0=> x=y
a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.
Xét \(x>y>z\)
\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)
\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)
\(\Rightarrow x=y=z\)'
\(\Rightarrow x+\frac{1}{x}=2\)
\(\Leftrightarrow x=1\)
\(\hept{\begin{cases}\frac{2}{x}+\frac{1}{y}=2\\\frac{6}{x}-\frac{2}{y}=1\end{cases}}\)ĐK : \(x;y\ne0\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\)
\(\Leftrightarrow\hept{\begin{cases}2a+b=2\\6a-2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}4a+2b=4\\6a-2b=1\end{cases}\Leftrightarrow}\hept{\begin{cases}10a=5\\2a+b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{2}\\2a+b=2\end{cases}}}\)
Thay a = 1/2 vào pt 2 ta được :
\(1+b=2\Leftrightarrow b=1\)
Theo cách đặt \(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)( tm )
Vậy hệ pt có một nghiệm ( x ; y ) = ( 2 ; 1 )