chứng minh rằng f(x)=ax^3+bx^2+cx+d có giá trị nguyên với mọi x nguyên khi 6a,2b,a+b+c,d là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
f(0) = d
f(1) = a + b + c + d
f(2) = 8a + 4b + c + d
- Nếu f(x) có giá trị nguyên với mọi x thì d ; a + b + c + d ; 8a +4b + c + d có giá trị nguyên .
- Do d nguyên a + b + c nguyên và (a + b + c + d) + (a + b + c) + 2b nguyên => 2b nguyên và 6a nguyên .
C/m tương tự
em xin lỗi vì đã chen vào chỗ học của m.n nhưng mọi người có thể tìm giúp em 1 người tên Nguyễn thị Ngọc Ánh{tên đăng nhập; nguyenthingocanh}đc ko ạ ?
đó là người chị nuôi của em bị mất tích trên olm này ạ....mong m.n người tìm hộ em người này ..... nếu có tung tích gì thì m.n nói với em ạ
T_T
Bạn tham khảo lời giải tại đây:
CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24